Table of Contents
International Journal of Evolutionary Biology
Volume 2012, Article ID 191495, 9 pages
http://dx.doi.org/10.1155/2012/191495
Review Article

Sex and Speciation: Drosophila Reproductive Tract Proteins— Twenty Five Years Later

1Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1
2Smithsonian Tropical Research Institute, P.O. Box 0843-03092, Balboa, Panama

Received 28 June 2012; Accepted 16 September 2012

Academic Editor: Alberto Civetta

Copyright © 2012 Rama Singh and Santosh Jagadeeshan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Darwin, The Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, John Murray, London, UK, 1859.
  2. T. Dobzhansky, Genetics and the Origin of Species, Columbia University Press, New York, NY, USA, 1937.
  3. E. Mayr, Animal Species and Evolution, Harvard University Press, Cambridge, Mass, USA, 1963.
  4. R. Levins, Evolution in Changing Environments, Princeton University Press, Princeton, NJ, USA, 1968.
  5. H. J. Muller, “Bearing of the Drosophila work on systematics,” in The New Systematics, J. Huxley, Ed., pp. 185–268, Clarendon Press, Oxford, UK, 1940. View at Google Scholar
  6. R. C. Lewontin, The Genetic Basis of Evolutionary Change, Columbia University Press, New York, UK, 1974.
  7. J. A. Coyne and H. A. Orr, Speciation, Sinauer Associates, Sunderland, UK, 2005.
  8. M. B. Coulthart and R. S. Singh, “Differing amounts of genetic polymorphism in testes and male accessory glands of Drosophila melanogaster and Drosophila simulans,” Biochemical Genetics, vol. 26, no. 1-2, pp. 153–164, 1988. View at Publisher · View at Google Scholar · View at Scopus
  9. M. B. Coulthart and R. S. Singh, “High level of divergence of male-reproductive-tract proteins, between Drosophila melanogaster and its sibling species, D. simulans,” Molecular Biology and Evolution, vol. 5, no. 2, pp. 182–191, 1988. View at Google Scholar · View at Scopus
  10. M. B. Coulthart and R. S. Singh, “Low genic variation in male-reproductive-tract proteins of Drosophila melanogaster and D. simulans,” Molecular Biology and Evolution, vol. 5, no. 2, pp. 167–181, 1988. View at Google Scholar · View at Scopus
  11. E. Nevo, A. Beiles, and R. Ben-Shlomo, “The evolutionary significance of genetic diversity: ecological, demographical and life history correlates,” Lecture Notes in Biomathematics, vol. 53, pp. 13–213, 1984. View at Google Scholar
  12. S. Thomas and R. S. Singh, “A comprehensive study of genic variation in natural populations of Drosophila melanogaster. VII. Varying rates of genic divergence as revealed by two-dimensional electrophoresis,” Molecular Biology and Evolution, vol. 9, no. 3, pp. 507–525, 1992. View at Google Scholar · View at Scopus
  13. A. Civetta and R. S. Singh, “High divergence of reproductive tract proteins and their association with postzygotic reproductive isolation in Drosophila melanogaster and Drosophila virilis group species,” Journal of Molecular Evolution, vol. 41, no. 6, pp. 1085–1095, 1995. View at Google Scholar · View at Scopus
  14. A. Civetta and R. S. Singh, “Sex-related genes, directional sexual selection, and speciation,” Molecular Biology and Evolution, vol. 15, no. 7, pp. 901–909, 1998. View at Google Scholar · View at Scopus
  15. L. W. Zeng and R. S. Singh, “A combined classical genetic and high resolution two-dimensional electrophoretic approach to the assessment of the number of genes affecting hybrid male sterility in Drosophila simulans and Drosophila sechellia,” Genetics, vol. 135, no. 1, pp. 135–147, 1993. View at Google Scholar · View at Scopus
  16. L. W. Zeng and R. S. Singh, “The genetic basis of Haldane's rule and the nature of asymmetric hybrid male sterility among Drosophila simulans, Drosophila mauritiana and Drosophila sechellia,” Genetics, vol. 134, no. 1, pp. 251–260, 1993. View at Google Scholar · View at Scopus
  17. S. Jagadeeshan, W. Haerty, and R. S. Singh, “Is speciation accompanied by rapid evolution? Insights from comparing reproductive and nonreproductive transcriptomes in Drosophila,” International Journal of Evolutionary Biology, vol. 2011, Article ID 595121, 11 pages, 2011. View at Publisher · View at Google Scholar
  18. R. S. Singh, “Toward a unified theory of speciation,” in Evolutionary Genetics: From Molecules to Morphology, R. S. Singh and C. B. Krimbas, Eds., pp. 570–604, Cambridge University Press, London, UK, 2000. View at Google Scholar
  19. R. S. Singh and R. J. Kulathinal, “Sex gene pool evolution and speciation: a new paradigm,” Genes and Genetic Systems, vol. 75, no. 3, pp. 119–130, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. R. S. Singh, J. Xu, and R. J. Kulathinal, Rapidly Evolving Genes and Genetic Systems, Oxford University Press, Oxford, UK, 2012.
  21. A. L. Hughes, “Rapid evolution of immunoglobulin superfamily C2 domains expressed in immune system cells,” Molecular Biology and Evolution, vol. 14, no. 1, pp. 1–5, 1997. View at Google Scholar · View at Scopus
  22. S. Paterson, T. Vogwill, A. Buckling et al., “Antagonistic coevolution accelerates molecular evolution,” Nature, vol. 464, no. 7286, pp. 275–278, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. R. J. Kulathinal, L. Skwarek, R. A. Morton, and R. S. Singh, “Rapid evolution of the sex-determining gene, transformer: structural diversity and rate heterogeneity among sibling species of Drosophila,” Molecular Biology and Evolution, vol. 20, no. 3, pp. 441–452, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. W. J. Swanson, A. G. Clark, H. M. Waldrip-Dail, M. F. Wolfner, and C. F. Aquadro, “Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in Drosophila,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 13, pp. 7375–7379, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. W. J. Swanson, A. Wong, M. F. Wolfner, and C. F. Aquadro, “Evolutionary expressed sequence tag analysis of Drosophila female reproductive tracts identifies genes subjected to positive selection,” Genetics, vol. 168, no. 3, pp. 1457–1465, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Jagadeeshan and R. S. Singh, “Rapidly evolving genes of Drosophila: differing levels of selective pressure in testis, ovary, and head tissues between sibling species,” Molecular Biology and Evolution, vol. 22, no. 9, pp. 1793–1801, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. W. Haerty and R. S. Singh, “Gene regulation divergence is a major contributor to the evolution of Dobzhansky-Muller incompatibilities between species of Drosophila,” Molecular Biology and Evolution, vol. 23, no. 9, pp. 1707–1714, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. C. G. Artieri and R. S. Singh, “Molecular evidence for increased regulatory conservation during metamorphosis, and against deleterious cascading effects of hybrid breakdown in Drosophila,” BMC Biology, vol. 8, article 26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. D. G. Torgerson, R. J. Kulathinal, and R. S. Singh, “Mammalian sperm proteins are rapidly evolving: evidence of positive selection in functionally diverse genes,” Molecular Biology and Evolution, vol. 19, no. 11, pp. 1973–1980, 2002. View at Google Scholar · View at Scopus
  30. D. G. Torgerson and R. S. Singh, “Sex-linked mammalian sperm proteins evolve faster than autosomal ones,” Molecular Biology and Evolution, vol. 20, no. 10, pp. 1705–1709, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. D. G. Torgerson and R. S. Singh, “Rapid evolution through gene duplication and subfunctionalization of the testes-specific α4 proteasome subunits in Drosophila,” Genetics, vol. 168, no. 3, pp. 1421–1432, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. D. G. Torgerson and R. S. Singh, “Enhanced adaptive evolution of sperm-expressed genes on the mammalian X chromosome,” Heredity, vol. 96, no. 1, pp. 39–44, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Ravi Ram, S. Ji, and M. F. Wolfner, “Fates and targets of male accessory gland proteins in mated female Drosophila melanogaster,” Insect Biochemistry and Molecular Biology, vol. 35, no. 9, pp. 1059–1071, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. M. F. Wolfner, “‘S.P.E.R.M.’ (seminal proteins (are) essential reproductive modulators): the view from Drosophila,” Society of Reproduction and Fertility supplement, vol. 65, supplement, pp. 183–199, 2007. View at Google Scholar · View at Scopus
  35. M. F. Wolfner, H. A. Harada, M. J. Bertram et al., “New genes for male accessory gland proteins in Drosophila melanogaster,” Insect Biochemistry and Molecular Biology, vol. 27, no. 10, pp. 825–834, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. K. R. Ram and M. F. Wolfner, “Sustained post-mating response in Drosophila melanogaster requires multiple seminal fluid proteins,” PLoS Genetics, vol. 3, no. 12, article e238, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Ravi Ram and M. F. Wolfner, “A network of interactions among seminal proteins underlies the long-term postmating response in Drosophila,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 36, pp. 15384–15389, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. D. C. Presgraves, “The molecular evolutionary basis of species formation,” Nature Reviews Genetics, vol. 11, no. 3, pp. 175–180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. H. A. Orr, “The genetic basis of reproductive isolation: insights from Drosophila,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, supplement 1, pp. 6522–6526, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. H. A. Orr, J. P. Masly, and D. C. Presgraves, “Speciation genes,” Current Opinion in Genetics and Development, vol. 14, no. 6, pp. 675–679, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. C. I. Wu and C. T. Ting, “Genes and speciation,” Nature Reviews Genetics, vol. 5, no. 2, pp. 114–122, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. W. Haerty, S. Jagadeeshan, R. J. Kulathinal et al., “Evolution in the fast lane: rapidly evolving sex-related genes in Drosophila,” Genetics, vol. 177, no. 3, pp. 1321–1335, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Long and C. H. Langley, “Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila,” Science, vol. 259, no. 5104, pp. 91–95, 1993. View at Google Scholar · View at Scopus
  44. D. I. Nurminsky, M. V. Nurminskaya, D. De Aguiar, and D. L. Hartl, “Selective sweep of a newly evolved sperm-specific gene in Drosophila,” Nature, vol. 396, no. 6711, pp. 572–575, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Long, “Evolution of novel genes,” Current Opinion in Genetics and Development, vol. 11, no. 6, pp. 673–680, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Long, E. Betrán, K. Thornton, and W. Wang, “The origin of new genes: glimpses from the young and old,” Nature Reviews Genetics, vol. 4, no. 11, pp. 865–875, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Long, M. Deutsch, W. Wang, E. Betrán, F. G. Brunet, and J. Zhang, “Origin of new genes: evidence from experimental and computational analyses,” Genetica, vol. 118, no. 2-3, pp. 171–182, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. W. Wang, J. Zhang, C. Alvarez, A. Llopart, and M. Long, “The origin of the jingwei gene and the complex modular structure of its parental gene, yellow emperor, in Drosophila melanogaster,” Molecular Biology and Evolution, vol. 17, no. 9, pp. 1294–1301, 2000. View at Google Scholar · View at Scopus
  49. M. T. Levine, C. D. Jones, A. D. Kern, H. A. Lindfors, and D. J. Begun, “Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 26, pp. 9935–9939, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Sun, C. T. Ting, and C. I. Wu, “The normal function of a speciation gene, Odysseus, and its hybrid sterility effect,” Science, vol. 305, no. 5680, pp. 81–83, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Sun, Functional Analysis of hte Hybrid Male Sterility Gene Odysseus in Drosophila, University of Chicago Press, Chicago, Ill, USA, 2003.
  52. B. Loppin, D. Lepetit, S. Dorus, P. Couble, and T. L. Karr, “Origin and neofunctionalization of a Drosophila paternal effect gene essential for zygote viability,” Current Biology, vol. 15, no. 2, pp. 87–93, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. F. W. Avila, L. K. Sirot, B. A. Laflamme, C. D. Rubinstein, and M. F. Wolfner, “Insect seminal fluid proteins: identification and function,” Annual Review of Entomology, vol. 56, pp. 21–40, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. L. K. Sirot, B. A. LaFlamme, J. L. Sitnik et al., “Molecular social interactions: Drosophila melanogaster seminal fluid proteins as a case study,” Advances in genetics, vol. 68, pp. 23–56, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. L. A. McGraw, G. Gibson, A. G. Clark, and M. F. Wolfner, “Genes regulated by mating, sperm, or seminal proteins in mated female Drosophila melanogaster,” Current Biology, vol. 14, no. 16, pp. 1509–1514, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. M. F. Wolfner, “The gifts that keep on giving: physiological functions and evolutionary dynamics of male seminal proteins in Drosophila,” Heredity, vol. 88, no. 2, pp. 85–93, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. J. J. Emerson, H. Kaessmann, E. Betrán, and M. Long, “Extensive gene traffic on the mammalian X chromosome,” Science, vol. 303, no. 5657, pp. 537–540, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. E. Betrán, K. Thornton, and M. Long, “Retroposed new genes out of the X in Drosophila,” Genome Research, vol. 12, no. 12, pp. 1854–1859, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. R. P. Meisel, B. B. Hilldorfer, J. L. Koch, S. Lockton, and S. W. Schaeffer, “Adaptive evolution of genes duplicated from the Drosophila pseudoobscura neo-X chromosome,” Molecular Biology and Evolution, vol. 27, no. 8, pp. 1963–1978, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. R. P. Meisel, J. H. Malone, and A. G. Clark, “Disentangling the relationship between sex-biased gene expression and X-linkage,” Genome Research, vol. 22, no. 7, pp. 1255–1265, 2012. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Cardoso-Moreira and M. Long, “The origin and evolution of new genes,” Methods in Molecular Biology, vol. 856, part 2, pp. 161–186, 2012. View at Google Scholar
  62. R. S. Singh and C. G. Artieri, “Male sex drive and the maintenance of sex: evidence from Drosophila,” Journal of Heredity, vol. 101, supplement 1, pp. S100–S106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. R. S. Singh and R. J. Kulathinal, “Male sex drive and the masculinization of the genome,” BioEssays, vol. 27, no. 5, pp. 518–525, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Civetta and R. S. Singh, “Broad-sense sexual selection, sex gene pool evolution, and speciation,” Genome, vol. 42, no. 6, pp. 1033–1041, 1999. View at Google Scholar · View at Scopus
  65. B. R. Graveley, A. N. Brooks, J. W. Carlson et al., “The developmental transcriptome of Drosophila melanogaster,” Nature, vol. 471, no. 7339, pp. 473–479, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. J. M. Ranz, C. I. Castillo-Davis, C. D. Meiklejohn, and D. L. Hartl, “Sex-dependent gene expression and evolution of the Drosophila transcriptome,” Science, vol. 300, no. 5626, pp. 1742–1745, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Ellegren and J. Parsch, “The evolution of sex-biased genes and sex-biased gene expression,” Nature Reviews Genetics, vol. 8, no. 9, pp. 689–698, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. X. Yang, E. E. Schadt, S. Wang et al., “Tissue-specific expression and regulation of sexually dimorphic genes in mice,” Genome Research, vol. 16, no. 8, pp. 995–1004, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. M. J. Parisi, V. Gupta, D. Sturgill et al., “Germline-dependent gene expression in distant non-gonadal somatic tissues of Drosophila,” BMC Genomics, vol. 11, no. 1, article 346, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. Y. Zhang, D. Sturgill, M. Parisi, S. Kumar, and B. Oliver, “Constraint and turnover in sex-biased gene expression in the genus Drosophila,” Nature, vol. 450, no. 7167, pp. 233–237, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Parisi, R. Nuttall, D. Naiman et al., “A survey of ovary-, testis-, and soma-biased gene expression in Drosophila melanogaster adults,” Genome biology, vol. 5, no. 6, p. R40, 2004. View at Google Scholar · View at Scopus
  72. M. Parisi, R. Nuttall, D. Naiman et al., “Paucity of genes on the Drosophila X chromosome showing male-biased expression,” Science, vol. 299, no. 5607, pp. 697–700, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. W. R. Rice, “Sex chromosomes and the evolution of sexual dimorphism,” Evolution, vol. 38, no. 4, pp. 735–742, 1984. View at Google Scholar · View at Scopus
  74. M. D. Vibranovski, H. F. Lopes, T. L. Karr, and M. Long, “Stage-specific expression profiling of Drosophila spermatogenesis suggests that meiotic sex chromosome inactivation drives genomic relocation of testis-expressed genes,” PLoS Genetics, vol. 5, no. 11, Article ID e1000731, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. E. Lifschytz and D. L. Lindsley, “The role of X-chromosome inactivation during spermatogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 69, no. 1, pp. 182–186, 1972. View at Google Scholar · View at Scopus
  76. C. D. Meiklejohn, E. L. Landeen, J. M. Cook, S. B. Kingan, and D. C. Presgraves, “Sex chromosome-specific regulation in the Drosophila male germline but little evidence for chromosomal dosage compensation or meiotic inactivation,” PLoS Biology, vol. 9, no. 8, Article ID e1001126, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. L. M. Mikhaylova and D. I. Nurminsky, “Lack of global meiotic sex chromosome inactivation, and paucity of tissue-specific gene expression on the Drosophila X chromosome,” BMC Biology, vol. 9, article 29, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. L. M. Mikhaylova and D. I. Nurminsky, “No severe and global X chromosome inactivation in meiotic male germline of Drosophila,” BMC Biology, vol. 10, article 50, 2012. View at Publisher · View at Google Scholar · View at Scopus
  79. M. D. Vibranovski, Y. E. Zhang, C. Kemkemer, H. F. Lopes, T. L. Karr, and M. Long, “Re-analysis of the larval testis data on meiotic sex chromosome inactivation revealed evidence for tissue-specific gene expression related to the Drosophila X chromosome,” BMC Biology, vol. 10, article 49, 2012. View at Publisher · View at Google Scholar · View at Scopus
  80. Z. Zhang, T. M. Hambuch, and J. Parsch, “Molecular evolution of sex-biased genes in Drosophila,” Molecular Biology and Evolution, vol. 21, no. 11, pp. 2130–2139, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Pröschel, Z. Zhang, and J. Parsch, “Widespread adaptive evolution of Drosophila genes with sex-biased expression,” Genetics, vol. 174, no. 2, pp. 893–900, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. J. B. S. Haldane, “Sex ratio and unisexual sterility in hybrid animals,” Journal of Genetics, vol. 12, no. 2, pp. 101–109, 1922. View at Publisher · View at Google Scholar · View at Scopus
  83. H. A. Lessios, “Speciation genes in free-spawning marine invertebrates,” Integrative and Comparative Biology, vol. 51, no. 3, pp. 456–465, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. H. A. Lessios, “Reproductive isolation between species of sea urchins,” Bulletin of Marine Science, vol. 81, no. 2, pp. 191–208, 2007. View at Google Scholar · View at Scopus
  85. A. Vieira and D. J. Miller, “Gamete interaction: is it species-specific?” Molecular Reproduction and Development, vol. 73, no. 11, pp. 1422–1429, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. A. T. Neill and V. D. Vacquier, “Ligands and receptors mediating signal transduction in sea urchin spermatozoa,” Reproduction, vol. 127, no. 2, pp. 141–149, 2004. View at Google Scholar · View at Scopus
  87. V. D. Vacquier, “Evolution of gamete recognition proteins,” Science, vol. 281, no. 5385, pp. 1995–1998, 1998. View at Publisher · View at Google Scholar · View at Scopus
  88. W. J. Swanson and V. D. Vacquier, “The rapid evolution of reproductive proteins,” Nature Reviews Genetics, vol. 3, no. 2, pp. 137–144, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. W. J. Swanson and V. D. Vacquier, “Concerted evolution in an egg receptor for a rapidly evolving abalone sperm protein,” Science, vol. 281, no. 5377, pp. 710–712, 1998. View at Google Scholar · View at Scopus
  90. N. L. Clark, J. Gasper, M. Sekino, S. A. Springer, C. F. Aquadro, and W. J. Swanson, “Coevolution of interacting fertilization proteins,” PLoS Genetics, vol. 5, no. 7, Article ID e1000570, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. E. C. Metz and S. R. Palumbi, “Positive selection and sequence rearrangements generate extensive polymorphism in the gamete recognition protein bindin,” Molecular Biology and Evolution, vol. 13, no. 2, pp. 397–406, 1996. View at Google Scholar · View at Scopus
  92. K. S. Zigler, M. A. McCartney, D. R. Levitan, and H. A. Lessios, “Sea urchin bindin divergence predicts gamete compatibility,” Evolution, vol. 59, no. 11, pp. 2399–2404, 2005. View at Google Scholar · View at Scopus
  93. E. Brunner, C. H. Ahrens, S. Mohanty et al., “A high-quality catalog of the Drosophila melanogaster proteome,” Nature Biotechnology, vol. 25, no. 5, pp. 576–583, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. S. Dorus, S. A. Busby, U. Gerike, J. Shabanowitz, D. F. Hunt, and T. L. Karr, “Genomic and functional evolution of the Drosophila melanogaster sperm proteome,” Nature Genetics, vol. 38, no. 12, pp. 1440–1445, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. E. R. Wasbrough, S. Dorus, S. Hester et al., “The Drosophila melanogaster sperm proteome-II (DmSP-II),” Journal of Proteomics, vol. 73, no. 11, pp. 2171–2185, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. C. D. Jiggins, C. Salazar, M. Linares, and J. Mavarez, “Review. Hybrid trait speciation and Heliconius butterflies,” Philosophical Transactions of the Royal Society B, vol. 363, no. 1506, pp. 3047–3054, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. R. E. Naisbit, C. D. Jiggins, M. Linares, C. Salazar, and J. Mallet, “Hybrid sterility, Haldane's rule and speciation in Heliconius cydno and H. melpomene,” Genetics, vol. 161, no. 4, pp. 1517–1526, 2002. View at Google Scholar · View at Scopus
  98. D. A. Barbash, D. F. Siino, A. M. Tarone, and J. Roote, “A rapidly evolving MYB-related protein causes species isolation in Drosophila,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 9, pp. 5302–5307, 2003. View at Publisher · View at Google Scholar · View at Scopus
  99. J. P. Masly, C. D. Jones, M. A. F. Noor, J. Locke, and H. A. Orr, “Gene transposition as a cause of hybrid sterility in Drosophila,” Science, vol. 313, no. 5792, pp. 1448–1450, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. N. Phadnis and H. A. Orr, “A single gene causes both male sterility and segregation distortion in Drosophila hybrids,” Science, vol. 323, no. 5912, pp. 376–379, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. D. C. Presgraves, L. Balagopalan, S. M. Abmayr, and H. A. Orr, “Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila,” Nature, vol. 423, no. 6941, pp. 715–719, 2003. View at Publisher · View at Google Scholar · View at Scopus
  102. C. T. Ting, S. C. Tsaur, M. L. Wu, and C. I. Wu, “A rapidly evolving homeobox at the site of a hybrid sterility gene,” Science, vol. 282, no. 5393, pp. 1501–1504, 1998. View at Google Scholar · View at Scopus
  103. J. J. Bayes and H. S. Malik, “Altered heterochromatin binding by a hybrid sterility protein in Drosophila sibling species,” Science, vol. 326, no. 5959, pp. 1538–1541, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. D. A. Barbash, P. Awadalla, and A. M. Tarone, “Functional divergence caused by ancient positive selection of a Drosophila hybrid incompatibility locus,” PLoS Biology, vol. 2, no. 6, pp. 839–848, 2004. View at Publisher · View at Google Scholar · View at Scopus
  105. S. Tang and D. C. Presgraves, “Evolution of the Drosophila nuclear pore complex results in multiple hybrid incompatibilities,” Science, vol. 323, no. 5915, pp. 779–782, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. H. A. Orr and M. Turelli, “The evolution of postzygotic isolation: accumulating Dobzhansky-Muller incompatibilities,” Evolution, vol. 55, no. 6, pp. 1085–1094, 2001. View at Google Scholar · View at Scopus
  107. C. G. Artieri, W. Haerty, and R. S. Singh, “Ontogeny and phylogeny: molecular signatures of selection, constraint, and temporal pleiotropy in the development of Drosophila,” BMC Biology, vol. 7, article 42, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. H. A. Orr and D. C. Presgraves, “Speciation by postzygotic isolation: forces, genes and molecules,” Bioessays, vol. 22, no. 12, pp. 1085–1094, 2000. View at Google Scholar
  109. K. E. Von Baer, Entwicklungsgeschichte der Tiere: Beobachtung und Relexion, Borntrager, Konigsberg, Germany, 1828.
  110. D. A. Garfield and G. A. Wray, “Comparative embryology without a microscope: using genomic approaches to understand the evolution of development,” Journal of Biology, vol. 8, no. 7, article 65, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. C. I. Castillo-Davis and D. L. Hartl, “Genome evolution and developmental constraint in Caenorhabditis elegans,” Molecular Biology and Evolution, vol. 19, no. 5, pp. 728–735, 2002. View at Google Scholar · View at Scopus
  112. J. Roux and M. Robinson-Rechavi, “Developmental constraints on vertebrate genome evolution,” PLoS Genetics, vol. 4, no. 12, Article ID e1000311, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. J. C. Davis, O. Brandman, and D. A. Petrov, “Protein evolution in the context of Drosophila development,” Journal of Molecular Evolution, vol. 60, no. 6, pp. 774–785, 2005. View at Publisher · View at Google Scholar · View at Scopus
  114. G. A. Parker, “Sexual selection and sexual conflict,” in Sexual Selection and Reproductive Competition in Insects, M. S. Blum and N. A. Blum, Eds., pp. 123–166, Academy Press, London, 1979. View at Google Scholar
  115. G. Arnqvist and L. Rowe, Sexual Conflict, Princeton University Press, Princeton, NJ, USA, 2005.
  116. G. A. Parker, “Sexual conflict over mating and fertilization: an overview,” Philosophical Transactions of the Royal Society B, vol. 361, no. 1466, pp. 235–259, 2006. View at Publisher · View at Google Scholar · View at Scopus
  117. G. A. Parker, “Sexual conflict and speciation,” Philosophical Transactions of the Royal Society B, vol. 353, no. 1366, pp. 261–274, 1998. View at Publisher · View at Google Scholar · View at Scopus
  118. G. Arnqvist, “Sexual conflict and sexual selection: lost in the chase,” Evolution, vol. 58, no. 6, pp. 1383–1388, 2004. View at Google Scholar · View at Scopus
  119. G. Arnqvist, M. Edvardsson, U. Friberg, and T. Nilsson, “Sexual conflict promotes speciation in insects,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 19, pp. 10460–10464, 2000. View at Google Scholar · View at Scopus
  120. A. Civetta and A. G. Clark, “Correlated effects of sperm competition and postmating female mortality,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 24, pp. 13162–13165, 2000. View at Publisher · View at Google Scholar · View at Scopus
  121. W. R. Rice, “Sexually antagonistic male adaptation triggered by experimental arrest of female evolution,” Nature, vol. 381, no. 6579, pp. 232–234, 1996. View at Publisher · View at Google Scholar · View at Scopus
  122. W. R. Rice, J. E. Linder, U. Friberg, T. A. Lew, E. H. Morrow, and A. D. Stewart, “Inter-locus antagonistic coevolution as an engine of speciation: assessment with hemiclonal analysis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, supplement 1, pp. 6527–6534, 2005. View at Publisher · View at Google Scholar · View at Scopus
  123. L. Rowe, G. Arnqvist, A. Sih, and J. J. Krupa, “Sexual conflict and the evolutionary ecology of mating patterns: water striders as a model system,” Trends in Ecology and Evolution, vol. 9, no. 8, pp. 289–293, 1994. View at Publisher · View at Google Scholar · View at Scopus