Table of Contents
Erratum

An erratum for this article has been published. To view the erratum, please click here.

International Journal of Evolutionary Biology
Volume 2012 (2012), Article ID 298147, 12 pages
http://dx.doi.org/10.1155/2012/298147
Research Article

Evolution of the FGF Gene Family

CNRS, UMR 7232, BIOM, Université Pierre et Marie Curie Paris 06, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France

Received 27 April 2012; Accepted 6 June 2012

Academic Editor: Frédéric Brunet

Copyright © 2012 Silvan Oulion et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. A. Trowell and E. N. Willmer, “Studies on the Growth of Tissues in vitro,” The Journal of Experimental Biology, vol. 16, pp. 60–70, 1939. View at Google Scholar
  2. D. Gospodarowicz, K. L. Jones, and G. Sato, “Purification of a growth factor for ovarian cells from bovine pituitary glands,” Proceedings of the National Academy of Sciences of the United States of America, vol. 71, no. 6, pp. 2295–2299, 1974. View at Google Scholar · View at Scopus
  3. E. Kolpakova, A. Wiedlocha, H. Stenmark, O. Klingenberg, P. O. Falnes, and S. Olsnes, “Cloning of an intracellular protein that binds selectively to mitogenic acidic fibroblast growth factor,” Biochemical Journal, vol. 336, part 1, pp. 213–222, 1998. View at Google Scholar · View at Scopus
  4. C. Popovici, R. Roubin, F. Coulier, and D. Birnbaum, “An evolutionary history of the FGF superfamily,” BioEssays, vol. 27, no. 8, pp. 849–857, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. D. M. Ornitz and N. Itoh, “Fibroblast growth factors,” Genome Biology, vol. 2, no. 3, article 3005, 2001. View at Google Scholar · View at Scopus
  6. N. Itoh and D. M. Ornitz, “Evolution of the Fgf and Fgfr gene families,” Trends in Genetics, vol. 20, no. 11, pp. 563–569, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Itoh, “The Fgf families in humans, mice, and zebrafish: their evolutional processes and roles in development, metabolism, and disease,” Biological and Pharmaceutical Bulletin, vol. 30, no. 10, pp. 1819–1825, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Coulier, P. Pontarotti, R. Roubin, H. Hartung, M. Goldfarb, and D. Birnbaum, “Of worms and men: an evolutionary perspective on the fibroblast growth factor (FGF) and FGF receptor families,” Journal of Molecular Evolution, vol. 44, no. 1, pp. 43–56, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. H. S. Kim, “The human FGF gene family: chromosome location and phylogenetic analysis,” Cytogenetics and Cell Genetics, vol. 93, no. 1-2, pp. 131–132, 2001. View at Google Scholar · View at Scopus
  10. U. Technau, S. Rudd, P. Maxwell et al., “Maintenance of ancestral complexity and non-metazoan genes in two basal cnidarians,” Trends in Genetics, vol. 21, no. 12, pp. 633–639, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Q. Matus, G. H. Thomsen, and M. Q. Martindale, “FGF signaling in gastrulation and neural development in Nematostella vectensis, an anthozoan cnidarian,” Development Genes and Evolution, vol. 217, no. 2, pp. 137–148, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Sutherland, C. Samakovlis, and M. A. Krasnow, “branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching,” Cell, vol. 87, no. 6, pp. 1091–1101, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Stathopoulos, B. Tam, M. Ronshaugen, M. Frasch, and M. Levine, “Pyramus and thisbe: FGF genes that pattern the mesoderm of Drosophila embryos,” Genes and Development, vol. 18, no. 6, pp. 687–699, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Beermann and R. Schröder, “Sites of Fgf signalling and perception during embryogenesis of the beetle Tribolium castaneum,” Development Genes and Evolution, vol. 218, no. 3-4, pp. 153–167, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. R. D. Burdine, E. B. Chen, S. F. Kwok, and M. J. Stern, “egl-17 encodes an invertebrate fibroblast growth factor family member required specifically for sex myoblast migration in Caenorhabditis elegans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 6, pp. 2433–2437, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. S. J. Bourlat, T. Juliusdottir, C. J. Lowe et al., “Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida,” Nature, vol. 444, no. 7115, pp. 85–88, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Lapraz, E. Röttinger, V. Duboc et al., “RTK and TGF-β signaling pathways genes in the sea urchin genome,” Developmental Biology, vol. 300, no. 1, pp. 132–152, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. A. M. Pani, E. E. Mullarkey, J. Aronowicz, S. Assimacopoulos, E. A. Grove, and C. J. Lowe, “Ancient deuterostome origins of vertebrate brain signalling centres,” Nature, vol. 483, no. 7389, pp. 289–294, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Bertrand, A. Camasses, I. Somorjai et al., “Amphioxus FGF signaling predicts the acquisition of vertebrate morphological traits,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 22, pp. 9160–9165, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Satou, K. S. Imai, and N. Satoh, “Fgf genes in the basal chordate Ciona intestinalis,” Development Genes and Evolution, vol. 212, no. 9, pp. 432–438, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Dehal and J. L. Boore, “Two rounds of whole genome duplication in the ancestral vertebrate,” PLoS Biology, vol. 3, no. 10, p. e314, 2005. View at Google Scholar · View at Scopus
  22. O. Jatllon, J. M. Aury, F. Brunet et al., “Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype,” Nature, vol. 431, no. 7011, pp. 946–957, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Itoh and M. Konishi, “The zebrafish FgF family,” Zebrafish, vol. 4, no. 3, pp. 179–186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Takatori, T. Butts, S. Candiani et al., “Comprehensive survey and classification of homeobox genes in the genome of amphioxus, Branchiostoma floridae,” Development Genes and Evolution, vol. 218, no. 11-12, pp. 579–590, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. N. H. Putnam, T. Butts, D. E. K. Ferrier et al., “The amphioxus genome and the evolution of the chordate karyotype,” Nature, vol. 453, no. 7198, pp. 1064–1071, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Huang, S. Yuan, L. Guo et al., “Genomic analysis of the immune gene repertoire of amphioxus reveals extraordinary innate complexity and diversity,” Genome Research, vol. 18, no. 7, pp. 1112–1126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Z. Holland, R. Albalat, K. Azumi et al., “The amphioxus genome illuminates vertebrate origins and cephalochordate biology,” Genome Research, vol. 18, no. 7, pp. 1100–1111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. S. D'Aniello, M. Irimia, I. Maeso et al., “Gene expansion and retention leads to a diverse tyrosine kinase superfamily in amphioxus,” Molecular Biology and Evolution, vol. 25, no. 9, pp. 1841–1854, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Punta, P. C. Coggill, R. Y. Eberhardt et al., “The Pfam protein families database,” Nucleic Acids Research, vol. 40, pp. D290–D301, 2012. View at Google Scholar
  30. J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins, “The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools,” Nucleic Acids Research, vol. 25, no. 24, pp. 4876–4882, 1997. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Gouy, S. Guindon, and O. Gascuel, “Sea view version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building,” Molecular Biology and Evolution, vol. 27, no. 2, pp. 221–224, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Abascal, R. Zardoya, and D. Posada, “ProtTest: selection of best-fit models of protein evolution,” Bioinformatics, vol. 21, no. 9, pp. 2104–2105, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Notredame, D. G. Higgins, and J. Heringa, “T-coffee: a novel method for fast and accurate multiple sequence alignment,” Journal of Molecular Biology, vol. 302, no. 1, pp. 205–217, 2000. View at Publisher · View at Google Scholar · View at Scopus