Table of Contents
International Journal of Evolutionary Biology
Volume 2012 (2012), Article ID 328392, 13 pages
http://dx.doi.org/10.1155/2012/328392
Review Article

The Genetic Basis of Female Mate Preference and Species Isolation in Drosophila

Department of Biology, The University of Western Ontario, London, ON, Canada N6A 5B7

Received 6 April 2012; Revised 25 June 2012; Accepted 7 July 2012

Academic Editor: Alberto Civetta

Copyright © 2012 Meghan Laturney and Amanda J. Moehring. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. W. Blows and R. A. Allan, “Levels of mate recognition within and between two Drosophila species and their hybrids,” American Naturalist, vol. 152, no. 6, pp. 826–837, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Coyne, “Genetics of sexual isolation in females of the Drosophila simulans species complex,” Genetical Research, vol. 60, no. 1, pp. 25–31, 1992. View at Google Scholar · View at Scopus
  3. M. Doi, M. Matsuda, M. Tomaru, H. Matsubayashi, and Y. Oguma, “A locus for female discrimination behavior causing sexual isolation in Drosophila,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 12, pp. 6714–6719, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Moulin, T. Aubin, and J. M. Jallon, “Why there is a one-way crossability between D. melanogaster and D. simulans? An ontogenic explanation,” Genetica, vol. 120, no. 1–3, pp. 285–292, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Nickel and A. Civetta, “An X chromosome effect responsible for asymmetric reproductive isolation between male Drosophila virilis and heterospecific females,” Genome, vol. 52, no. 1, pp. 49–56, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. A. J. Moehring, J. Li, M. D. Schug et al., “Quantitative trait loci for sexual isolation between Drosophila simulans and D. mauritiana,” Genetics, vol. 167, no. 3, pp. 1265–1274, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. A. J. Moehring, A. Llopart, S. Elwyn, J. A. Coyne, and T. F. C. Mackay, “The genetic basis of prezygotic reproductive isolation between Drosophila santomea and D. yakuba due to mating preference,” Genetics, vol. 173, no. 1, pp. 215–223, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. J. C. Hall, “The mating of a fly,” Science, vol. 264, no. 5166, pp. 1702–1714, 1994. View at Google Scholar · View at Scopus
  9. R. J. Greenspan, “Understanding the genetic construction of behavior,” Scientific American, vol. 272, no. 4, pp. 74–79, 1995. View at Google Scholar · View at Scopus
  10. R. J. Greenspan and J. F. Ferveur, “Courtship in Drosophila,” Annual Review of Genetics, vol. 34, pp. 205–232, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. K. A. Matthews, T. C. Kaufman, and W. M. Gelbart, “Research resources for Drosophila: the expanding universe,” Nature Reviews Genetics, vol. 6, no. 3, pp. 179–193, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. P. G. Byrne and W. R. Rice, “Evidence for adaptive male mate choice in the fruit fly Drosophila melanogaster,” Proceedings of the Royal Society B, vol. 273, no. 1589, pp. 917–922, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. J. A. Coyne, “Genetics of sexual isolation between two sibling species, Drosophila simulans and Drosophila mauritiana,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 14, pp. 5464–5468, 1989. View at Google Scholar · View at Scopus
  14. T. Sakai and N. Ishida, “Circadian rhythms of female mating activity governed by clock genes in Drosophila,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 16, pp. 9221–9225, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Dobzhansky, “Speciation as a stage in evolutionary divergence,” American Naturalist, vol. 74, no. 753, pp. 312–321, 1940. View at Publisher · View at Google Scholar
  16. J. C. Uyeda, S. J. Arnold, P. A. Hohenlohe, and L. S. Mead, “Drift promotes speciation by sexual selection,” Evolution, vol. 63, no. 3, pp. 583–594, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Nanda and B. N. Singh, “Origin of sexual isolation in Drosophila ananassae due to founder effects,” Genetica, vol. 139, no. 6, pp. 779–787, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Turelli, N. H. Barton, and J. A. Coyne, “Theory and speciation,” Trends in Ecology and Evolution, vol. 16, no. 7, pp. 330–343, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. J. A. Coyne and A. Orr, Speciation, Sinauer and Associates, Sunderland, UK, 2004.
  20. J. M. Sobel, G. F. Chen, L. R. Watt, and D. W. Schemske, “The biology of speciation,” Evolution, vol. 64, no. 2, pp. 295–315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Nanda and B. N. Singh, “Behavioural reproductive isolation and speciation in Drosophila,” Journal of Biosciences, vol. 37, no. 2, pp. 359–374, 2012. View at Publisher · View at Google Scholar
  22. M. A. Noor, “Speciation driven by natural selection in Drosophila,” Nature, vol. 375, no. 6533, pp. 674–675, 1995. View at Google Scholar · View at Scopus
  23. E. Zouros and C. J. d'Entremont, “Sexual isolation among populations of Drosophila mojavensis: response to pressure from a related species,” Evolution, vol. 34, no. 3, pp. 421–430, 1980. View at Publisher · View at Google Scholar
  24. A. R. Templeton, “Mechanisms of speciation—a population genetic approach,” Annual Review of Ecology, Evolution, and Systematics, vol. 12, pp. 23–48, 1981. View at Publisher · View at Google Scholar
  25. M. A. F. Noor, “Reinforcement and other consequences of sympatry,” Heredity, vol. 83, no. 5, pp. 503–508, 1999. View at Google Scholar · View at Scopus
  26. J. H. Jennings and W. J. Etges, “Species hybrids in the laboratory but not in nature: a reanalysis of premating isolation between Drosophila arizonae and D. mojavensis,” Evolution, vol. 64, no. 2, pp. 587–598, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. H. D. Rundle, S. F. Chenoweth, P. Doughty, and M. W. Blows, “Divergent selection and the evolution of signal traits and mating preferences,” PLoS Biology, vol. 3, no. 11, article e368, 2005. View at Google Scholar · View at Scopus
  28. D. R. Matute, “Reinforcement can overcome gene flow during speciation in Drosophila,” Current Biology, vol. 20, no. 24, pp. 2229–2233, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. E. M. Myers and W. A. Frankino, “Time in a bottle: the evolutionary fate of species discrimination in sibling Drosophila species,” PLoS ONE, vol. 7, no. 2, Article ID e31759, 2012. View at Publisher · View at Google Scholar
  30. R. Yukilevich, “Asymmetrical patterns of speciation uniquely support reinforcement in Drosophila,” Evolution, vol. 66, no. 5, pp. 1430–1446, 2012. View at Publisher · View at Google Scholar
  31. R. J. Ayala, “Relative fitness of populations of Drosophila serrata and Drosophila birchii,” Genetics, vol. 51, pp. 527–544, 1965. View at Google Scholar · View at Scopus
  32. M. C. Carracedo, L. García-Florez, and E. San Miguel, “Sexual maturation in Drosophila melanogaster females and hybridization with D. simulans males: a study of inheritance modes,” Journal of Heredity, vol. 80, no. 2, pp. 157–158, 1989. View at Google Scholar · View at Scopus
  33. R. Pineiro, M. C. Carracedo, J. I. Izquierdo, and P. Casares, “Bidirectional selection for female receptivity in Drosophila melanogaster,” Behavior Genetics, vol. 23, no. 1, pp. 77–83, 1993. View at Google Scholar · View at Scopus
  34. J. I. Izquierdo, M. C. Carracedo, R. Pineiro, and P. Casares, “Response to selection for increased hybridization between Drosophila melanogaster females and D. simulans males,” Journal of Heredity, vol. 83, no. 2, pp. 100–104, 1992. View at Google Scholar · View at Scopus
  35. M. Laturney and A. J. Moehring, “Fine-scale genetic analysis of species-specific female preference in Drosophila simulans,” Journal of Evolutionary Biology, vol. 25, pp. 1718–1731, 2012. View at Publisher · View at Google Scholar
  36. K. Y. Kaneshiro, “Ethological isolation and phylogeny in the Planitibia subgroup of Hawaiian Drosophila,” Evolution, vol. 30, no. 4, pp. 740–745, 1976. View at Google Scholar · View at Scopus
  37. K. Y. Kaneshiro, “Sexual selection and direction of evolution in the biosystematics of Hawaiian Drosophilidae,” Annual Review of Entomology, vol. 28, pp. 161–178, 1983. View at Google Scholar · View at Scopus
  38. Y. K. Kim, M. Ruiz-Garcia, D. Alvarez, D. R. Phillips, and W. W. Anderson, “Sexual isolation between North American and Bogota strains of Drosophila pseudoobscura,” Behavior Genetics, vol. 42, no. 3, pp. 472–482, 2012. View at Publisher · View at Google Scholar
  39. J. Ringo, G. Sharon, and D. Segal, “Bacteria-induced sexual isolation in Drosophila,” Fly, vol. 5, no. 4, pp. 310–315, 2011. View at Publisher · View at Google Scholar
  40. J. A. Coyne and H. A. Orr, “Patterns of speciation in Drosophila revisited,” Evolution, vol. 51, no. 1, pp. 295–303, 1997. View at Google Scholar · View at Scopus
  41. A. J. Moehring and T. F. C. Mackay, “The quantitative genetic basis of male mating behavior in Drosophila melanogaster,” Genetics, vol. 167, no. 3, pp. 1249–1263, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. R. R. H. Anholt and T. F. C. Mackay, “Quantitative genetic analyses of complex behaviours in Drosophila,” Nature Reviews Genetics, vol. 5, no. 11, pp. 838–849, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. U. Klahre, A. Gurba, K. Hermann et al., “Pollinator choice in Petunia depends on two major genetic loci for floral scent production,” Current Biology, vol. 21, no. 9, pp. 730–739, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. N. I. Morehouse and R. L. Rutowski, “In the eyes of the beholders: female choice and avian predation risk associated with an exaggerated male butterfly color,” American Naturalist, vol. 176, no. 6, pp. 768–784, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. M. R. Kronforst, L. G. Young, D. D. Kapan, C. McNeely, R. J. O'Neill, and L. E. Gilbert, “Linkage of butterfly mate preference and wing color preference cue at the genomic location of wingless,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 17, pp. 6575–6580, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. M. E. Maan, O. Seehausen, L. Söderberg et al., “Intraspecific sexual selection on a speciation trait, male coloration, in the Lake Victoria cichlid Pundamilia nyererei,” Proceedings of the Royal Society B, vol. 271, no. 1556, pp. 2445–2452, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. M. P. Haesler and O. Seehausen, “Inheritance of female mating preference in a sympatric sibling species pair of Lake Victoria cichlids: implications for speciation,” Proceedings of the Royal Society B, vol. 272, no. 1560, pp. 237–245, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. G. E. Carney, “A rapid genome-wide response to Drosophila melanogaster social interactions,” BMC Genomics, vol. 8, article 288, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. E. A. Ruedi and K. A. Hughes, “Age, but not experience, affects courtship gene expression in male Drosophila melanogaster,” PLoS ONE, vol. 4, no. 7, Article ID e6150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. M. K. N. Lawniczak and D. J. Begun, “A genome-wide analysis of courting and mating responses in Drosophila melanogaster females,” Genome, vol. 47, no. 5, pp. 900–910, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. T. F. C. Mackay, S. L. Heinsohn, R. F. Lyman, A. J. Moehring, T. J. Morgan, and S. M. Rollmann, “Genetics and genomics of Drosophila mating behavior,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 1, pp. 6622–6629, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Butlin and M. G. Ritchie, “Evolutionary biology: searching for speciation genes,” Nature, vol. 412, no. 6842, pp. 31–33, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. C. P. Kyriacou, “Single gene mutations in Drosophila: what can they tell us about the evolution of sexual behaviour?” Genetica, vol. 116, no. 2-3, pp. 197–203, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. D. Yamamoto and Y. Nakano, “Sexual behavior mutants revisited: molecular and cellular basis of Drosophila mating,” Cellular and Molecular Life Sciences, vol. 56, no. 7-8, pp. 634–646, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Tomaru, H. Yamada, and Y. Oguma, “Female mate recognition and sexual isolation depending on courtship song in Drosophila sechellia and its siblings,” Genes and Genetic Systems, vol. 79, no. 3, pp. 145–150, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. J. M. Gleason, J. M. Jallon, J. D. Rouault, and M. G. Ritchie, “Quantitative trait loci for cuticular hydrocarbons associated with sexual isolation between Drosophila simulans and D. sechellia,” Genetics, vol. 171, no. 4, pp. 1789–1798, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. D. A. Wheeler, C. P. Kyriacou, M. L. Greenacre et al., “Molecular transfer of a species-specific behavior from Drosophila simulans to Drosophila melanogaster,” Science, vol. 251, no. 4997, pp. 1082–1085, 1991. View at Google Scholar · View at Scopus
  58. B. J. Dickson, “Wired for sex: the neurobiology of Drosophila mating decisions,” Science, vol. 322, no. 5903, pp. 904–909, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Civetta and E. J. F. Cantor, “The genetics of mating recognition between Drosophila simulans and D. sechellia,” Genetical Research, vol. 82, no. 2, pp. 117–126, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. R. L. Davis, “Traces of Drosophila memeory,” Neuron, vol. 14, no. 1, pp. 8–19, 2011. View at Google Scholar
  61. J. S. de Belle and M. Heisenberg, “Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies,” Science, vol. 263, no. 5147, pp. 692–695, 1994. View at Google Scholar · View at Scopus
  62. M. Balakireva, R. F. Stocker, N. Gendre, and J. F. Ferveur, “Voila, a new Drosophila courtship variant that affects the nervous system: behavioral, neural, and genetic characterization,” Journal of Neuroscience, vol. 18, no. 11, pp. 4335–4343, 1998. View at Google Scholar · View at Scopus
  63. K. M. C. O'Dell, J. D. Armstrong, M. Y. Yang, and K. Kalser, “Functional dissection of the Drosophila mushroom bodies by selective feminization of genetically defined subcompartments,” Neuron, vol. 15, no. 1, pp. 55–61, 1995. View at Google Scholar · View at Scopus
  64. W. S. Neckameyer, “Dopamine modulates female sexual receptivity in Drosophila melanogaster,” Journal of Neurogenetics, vol. 12, no. 2, pp. 101–114, 1998. View at Google Scholar · View at Scopus
  65. J. M. Gleason, “Mutations and natural genetic variation in the courtship song of Drosophila,” Behavior Genetics, vol. 35, no. 3, pp. 265–277, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. C. P. Kyriacou and J. C. Hall, “Circadian rhythm mutations in Drosophila melanogaster affect short-term fluctuations in the male's courtship song,” Proceedings of the National Academy of Sciences of the United States of America, vol. 77, no. 11 I, pp. 6729–6733, 1980. View at Google Scholar · View at Scopus
  67. M. G. Ritchie and C. P. Kyriacou, “Reproductive isolation and the period gene of Drosophila,” Molecular Ecology, vol. 3, no. 6, pp. 595–599, 1994. View at Google Scholar · View at Scopus
  68. T. Sakai and N. Ishida, “Time, love and species,” Neuroendocrinology Letters, vol. 22, no. 4, pp. 222–228, 2001. View at Google Scholar · View at Scopus
  69. J. D. Rouault, C. Marican, C. Wicker-Thomas, and J. M. Jallon, “Relations between cuticular hydrocarbon (HC) polymorphism, resistance against desiccation and breeding temperature; a model for HC evolution in D. melanogaster and D. simulans,” Genetica, vol. 120, no. 1–3, pp. 195–212, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. J. F. Ferveur, “Cuticular hydrocarbons: their evolution and roles in Drosophila pheromonal communication,” Behavior Genetics, vol. 35, no. 3, pp. 279–295, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. J. C. Billeter, J. Atallah, J. J. Krupp, J. G. Millar, and J. D. Levine, “Specialized cells tag sexual and species identity in Drosophila melanogaster,” Nature, vol. 461, no. 7266, pp. 987–991, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. D. Scott, “Genetic variation for female mate discrimination in Drosophila melanogaster,” Evolution, vol. 48, no. 1, pp. 112–121, 1994. View at Google Scholar · View at Scopus
  73. M. D. Sharma, J. Hunt, and D. J. Hosken, “Antagonistic responses to natural and sexual selection and the sex-specific evolution of cuticular hydrocarbons in Drosophila simulans,” Evolution, vol. 66, no. 3, pp. 665–677, 2012. View at Publisher · View at Google Scholar
  74. J. M. Gleason, R. A. James, C. Wicker-Thomas, and M. G. Ritchie, “Identification of quantitative trait loci function through analysis of multiple cuticular hydrocarbons differing between Drosophila simulans and Drosophila sechellia females,” Heredity, vol. 103, no. 5, pp. 416–424, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. J. F. Ferveur, M. Cobb, H. Boukella, and J. M. Jallon, “World-wide variation in Drosophila melanogaster sex pheromone: behavioural effects, genetic bases and potential evolutionary consequences,” Genetica, vol. 97, no. 1, pp. 73–80, 1996. View at Google Scholar · View at Scopus
  76. R. Dallerac, C. Labeur, J. M. Jallon, D. C. Knipple, W. L. Roelofs, and C. Wicker-Thomas, “A δ9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila melanogaster,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 17, pp. 9449–9454, 2000. View at Google Scholar · View at Scopus
  77. C. Wicker-Thomas and J. M. Jallon, “Control of female pheromones in Drosophila melanogaster by homeotic genes,” Genetical Research, vol. 78, no. 3, pp. 235–242, 2001. View at Google Scholar · View at Scopus
  78. C. Marican, L. Duportets, S. Birman, and J. M. Jallon, “Female-specific regulation of cuticular hydrocarbon biosynthesis by dopamine in Drosophila melanogaster,” Insect Biochemistry and Molecular Biology, vol. 34, no. 8, pp. 823–830, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. J. F. Ferveur and J. M. Jallon, “Nerd, a locus on chromosome III, affects male reproductive behavior in Drosophila melanogaster,” Naturwissenschaften, vol. 80, no. 10, pp. 474–475, 1993. View at Publisher · View at Google Scholar · View at Scopus
  80. J. F. Ferveur and J. M. Jallon, “Genetic control of male cuticular hydrocarbons in Drosophila melanogaster,” Genetical Research, vol. 67, no. 3, pp. 211–218, 1996. View at Google Scholar · View at Scopus
  81. J. M. Jallon, G. Lauge, L. Orssaud, and C. Antony, “Female pheromones in Drosophila melanogaster are controlled by the doublesex locus,” Genetics Research, vol. 51, no. 1, pp. 17–22, 1988. View at Publisher · View at Google Scholar
  82. J. A. Coyne, C. Wicker-Thomas, and J. M. Jallon, “A gene responsible for a cuticular hydrocarbon polymorphism in Drosophila melanogaster,” Genetical Research, vol. 73, no. 3, pp. 189–203, 1999. View at Publisher · View at Google Scholar · View at Scopus
  83. M. G. Ritchie and M. A. Noor, “Evolutionary genetics: gene replacement and the genetics of speciation,” Heredity, vol. 93, no. 1, pp. 1–2, 2004. View at Google Scholar · View at Scopus
  84. M. A. F. Noor, K. L. Gratos, L. A. Bertucci, and J. Reiland, “Chromosomal inversions and the reproductive isolation of species,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 21, pp. 12084–12088, 2001. View at Publisher · View at Google Scholar · View at Scopus
  85. M. C. Carracedo, R. Pineiro, and P. Casares, “Chromosomal substitution analysis of receptivity and sexual isolation in Drosophila melanogaster females,” Heredity, vol. 75, no. 5, pp. 541–546, 1995. View at Google Scholar · View at Scopus
  86. M. C. Carracedo, A. Suarez, A. Asenjo, and P. Casares, “Genetics of hybridization between Drosophila simulans females and D. melanogaster males,” Heredity, vol. 80, no. 1, pp. 17–24, 1998. View at Publisher · View at Google Scholar · View at Scopus
  87. T. Uenoyama and Y. Inoue, “Genetic studies on premating isolation in Drosophila simulans. I. A D. simulans line highly crossable with D. melanogaster,” Japanese Journal of Genetics, vol. 70, no. 3, pp. 365–371, 1995. View at Publisher · View at Google Scholar · View at Scopus
  88. Drosophila 12 Genomes Consortium, “Evolution of genes and genomes on the Drosophila phylogeny,” Nature, vol. 450, no. 7167, pp. 203–218, 2007. View at Google Scholar
  89. S. Holtzman, D. Miller, R. Eisman, H. Kuwayama, T. Niimi, and T. Kaufman, “Transgenic tools for members of the genus Drosophila with sequenced genomes,” Fly, vol. 4, no. 4, pp. 349–362, 2010. View at Google Scholar · View at Scopus
  90. C. I. Wu, H. Hollocher, D. J. Begun, C. F. Aquadro, Y. Xu, and M. L. Wu, “Sexual isolation in Drosophila melanogaster: a possible case of incipient speciation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 7, pp. 2519–2523, 1995. View at Publisher · View at Google Scholar · View at Scopus
  91. H. Hollocher, C. T. Ting, M. L. Wu, and C. I. Wu, “Incipient speciation by sexual isolation in Drosophila melanogaster: extensive genetic divergence without reinforcement,” Genetics, vol. 147, no. 3, pp. 1191–1201, 1997. View at Google Scholar · View at Scopus
  92. C. T. Ting, A. Takahashi, and C. I. Wu, “Incipient speciation by sexual isolation in Drosophila: concurrent evolution at multiple loci,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 12, pp. 6709–6713, 2001. View at Publisher · View at Google Scholar · View at Scopus
  93. R. I. Bailey, P. Innocenti, E. H. Morrow, U. Friberg, and A. Qvarnström, “Female Drosophila melanogaster gene expression and mate choice: the X chromosome harbours candidate genes underlying sexual isolation,” PLoS ONE, vol. 6, no. 2, Article ID e17358, 2011. View at Publisher · View at Google Scholar · View at Scopus
  94. A. Takahashi, S. C. Tsaur, J. A. Coyne, and C. I. Wu, “The nucleotide changes governing cuticular hydrocarbon variation and their evolution in Drosophila melanogaster,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 7, pp. 3920–3925, 2001. View at Publisher · View at Google Scholar · View at Scopus
  95. J. A. Coyne, “Genetics of differences in pheromonal hydrocarbons between Drosophila melanogaster and D. simulans,” Genetics, vol. 143, no. 1, pp. 353–364, 1996. View at Google Scholar · View at Scopus
  96. S. J. Macdonald and D. B. Goldstein, “A quantitative genetic analysis of male sexual traits distinguishing the sibling species Drosophila simulans and D. sechellia,” Genetics, vol. 153, no. 4, pp. 1683–1699, 1999. View at Google Scholar · View at Scopus
  97. J. A. Coyne, A. P. Crittenden, and K. Mah, “Genetics of a pheromonal difference contributing to reproductive isolation in Drosophila,” Science, vol. 265, no. 5177, pp. 1461–1464, 1994. View at Google Scholar · View at Scopus
  98. J. A. Coyne, “Genetics of a difference in male cuticular hydrocarbons between two sibling species, Drosophila simulans and D. sechellia,” Genetics, vol. 143, no. 4, pp. 1689–1698, 1996. View at Google Scholar · View at Scopus
  99. J. M. Gleason and M. G. Ritchie, “Do quantitative trait loci (QTL) for a courtship song difference between Drosophila simulans and D. sechellia coincide with candidate genes for intraspecific QTL?” Genetics, vol. 166, no. 3, pp. 1303–1311, 2004. View at Publisher · View at Google Scholar · View at Scopus
  100. J. A. Coyne, “The genetics of an isolating mechanism between two sibling species of Drosophila,” Evolution, vol. 47, no. 3, pp. 778–788, 1993. View at Publisher · View at Google Scholar
  101. J. R. True, J. Liu, L. F. Stam, Z. B. Zeng, and C. C. Laurie, “Quantitative genetic analysis of divergence in male secondary sexual traits between Drosophila simulans and Drosophila mauritiana,” Evolution, vol. 51, no. 3, pp. 816–832, 1997. View at Google Scholar · View at Scopus
  102. Z. B. Zeng, J. Liu, L. F. Stam, C. H. Kao, J. M. Mercer, and C. C. Laurie, “Genetic architecture of a morphological shape difference between two Drosophila species,” Genetics, vol. 154, no. 1, pp. 299–310, 2000. View at Google Scholar · View at Scopus
  103. J. A. Coyne, “Genetics of sexual isolation in male hybrids of Drosophila simulans and D. mauritiana,” Genetical Research, vol. 68, no. 3, pp. 211–220, 1996. View at Google Scholar · View at Scopus
  104. J. A. Coyne and B. Charlesworth, “Genetics of a pheromonal difference affecting sexual isolation between Drosophila mauritiana and D. sechellia,” Genetics, vol. 145, no. 4, pp. 1015–1030, 1997. View at Google Scholar · View at Scopus
  105. W. J. Etges, C. C. de Oliveira, E. Gragg, D. Ortíz-Barrientos, M. A. F. Noor, and M. G. Ritchie, “Genetics of incipient speciation in Drosophila mojavensis. I. Male courtship song, mating success, and genotype X environment interactions,” Evolution, vol. 61, no. 5, pp. 1106–1119, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. E. Zouros, “The chromosomal basis of sexual isolation in two sibling species of Drosophila: D. arizonensis and D. mojavensis,” Genetics, vol. 97, no. 3-4, pp. 703–718, 1981. View at Google Scholar · View at Scopus
  107. A. R. Templeton, “Analysis of head shape differences between two interfertile species of Hawaiian Drosophila,” Evolution, vol. 31, no. 3, pp. 630–641, 1977. View at Google Scholar · View at Scopus
  108. F. C. Val, “Genetic analysis of the morphological differences between two interfertile species of Hawaiian Drosophila,” Evolution, vol. 31, no. 3, pp. 611–629, 1977. View at Google Scholar · View at Scopus
  109. D. Ortiz-Barrientos, B. A. Counterman, and M. A. F. Noor, “The genetics of speciation by reinforcement,” PLoS Biology, vol. 2, no. 12, article e416, 2004. View at Publisher · View at Google Scholar · View at Scopus
  110. D. Ortíz-Barrientos and M. A. F. Noor, “Evolution: evidence for a one-allele assortative mating locus,” Science, vol. 310, no. 5753, article 1467, 2005. View at Publisher · View at Google Scholar · View at Scopus
  111. M. A. F. Noor, “Genetics of sexual isolation and courtship dysfunction in male hybrids of Drosophila pseudoobscura and Drosophila persimilis,” Evolution, vol. 51, no. 3, pp. 809–815, 1997. View at Google Scholar · View at Scopus
  112. M. A. F. Noor, K. L. Grams, L. A. Bertucci, Y. Almendarez, J. Reiland, and K. R. Smith, “The genetics of reproductive isolation and the potential for gene exchange between Drosophila pseudoobscura and D. Persimilis via backcross hybrid males,” Evolution, vol. 55, no. 3, pp. 512–521, 2001. View at Google Scholar · View at Scopus
  113. M. A. Williams, A. G. Blouin, and M. A. F. Noor, “Courtship songs of Drosophila pseudoobscura and D. persimilis. II. Genetics of species differences,” Heredity, vol. 86, no. 1, pp. 68–77, 2001. View at Publisher · View at Google Scholar · View at Scopus
  114. M. A. F. Noor and J. A. Coyne, “Genetics of a difference in cuticular hydrocarbons between Drosophila pseudoobscura and D. persimilis,” Genetical Research, vol. 68, no. 2, pp. 117–123, 1996. View at Google Scholar · View at Scopus
  115. A. Hoikkala, S. Päällysaho, J. Aspi, and J. Lumme, “Localization of genes affecting species differences in male courtship song between Drosophila virilis and D. littoralis,” Genetical Research, vol. 75, no. 1, pp. 37–45, 2000. View at Publisher · View at Google Scholar · View at Scopus
  116. A. Hoikkala and J. Lumme, “Genetic control of the difference in male courtship sound between Drosophila virilis and D. lummei,” Behavior Genetics, vol. 14, no. 3, pp. 257–268, 1984. View at Google Scholar · View at Scopus
  117. J. O. Liimatainen and J. M. Jallon, “Genetic analysis of cuticular hydrocarbons and their effect on courtship in Drosophila virilis and D. lummei,” Behavior Genetics, vol. 37, no. 5, pp. 713–725, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. T. R. Shirangi, H. D. Dufour, T. M. Williams, and S. B. Carroll, “Rapid evolution of sex pheromone-producing enzyme expression in Drosophila,” PLoS Biology, vol. 7, no. 8, Article ID e1000168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. W. J. Etges, C. C. de Oliveira, M. A. F. Noor, and M. G. Ritchie, “Genetics of incipient speciation in Drosophila mojavensis. III. Life-history divergence in allopatry and reproductive isolation,” Evolution, vol. 64, no. 12, pp. 3549–3569, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. P. Nanda and B. N. Singh, “Effect of chromosome arrangements on mate recognition system leading to behavioral isolation in Drosophila ananassae,” Genetica, vol. 139, no. 2, pp. 273–279, 2011. View at Publisher · View at Google Scholar · View at Scopus
  121. K. Sawamura, H. Zhi, K. Setoguchi et al., “Genetic analysis of female mating recognition between Drosophila ananassae and Drosophila pallidosa: application of interspecific mosaic genome lines,” Genetica, vol. 133, no. 2, pp. 179–185, 2008. View at Publisher · View at Google Scholar · View at Scopus
  122. H. Yamada, M. Matsuda, and Y. Oguma, “Genetics of sexual isolation based on courtship song between two sympatric species: Drosophila ananassae and D. pallidosa,” Genetica, vol. 116, no. 2-3, pp. 225–237, 2002. View at Publisher · View at Google Scholar · View at Scopus
  123. S. E. McGaugh and M. A. Noor, “Genomic impacts of chromosomal inversions in parapatric Drosophila species,” Philosophical Transactions of the Royal Society B, vol. 367, no. 1587, pp. 422–429, 2012. View at Publisher · View at Google Scholar
  124. C. V. Barnwell and M. A. F. Noor, “Failure to replicate two mate preference QTLs across multiple strains of Drosophila pseudoobscura,” Journal of Heredity, vol. 99, no. 6, pp. 653–656, 2008. View at Publisher · View at Google Scholar · View at Scopus
  125. M. R. Servedio and M. A. F. Noor, “The role of reinforcement in speciation: theory and data,” Annual Review of Ecology, Evolution, and Systematics, vol. 34, pp. 339–364, 2003. View at Google Scholar · View at Scopus
  126. A. Llopart, S. Elwyn, D. Lachaise, and J. A. Coyne, “Genetics of a difference in pigmentation between Drosophila yakuba and Drosophila santomea,” Evolution, vol. 56, no. 11, pp. 2262–2277, 2002. View at Google Scholar · View at Scopus
  127. D. Lachaise, M. Harry, M. Solignac, F. Lemeunier, V. Benassi, and M. L. Cariou, “Evolutionary novelties in islands: Drosophila santomea, a new melanogaster sister species from São Tomé,” Proceedings of the Royal Society B, vol. 267, no. 1452, pp. 1487–1495, 2000. View at Google Scholar · View at Scopus
  128. J. A. Coyne, S. Y. Kim, A. S. Chang, D. Lachaise, and S. Elwyn, “Sexual isolation between two sibling species with overlapping ranges: Drosophila santomea and Drosophila yakuba,” Evolution, vol. 56, no. 12, pp. 2424–2434, 2002. View at Google Scholar · View at Scopus
  129. R. M. Kliman, P. Andolfatto, J. A. Coyne et al., “The population genetics of the origin and divergence of the Drosophila simulans complex species,” Genetics, vol. 156, no. 4, pp. 1913–1931, 2000. View at Google Scholar · View at Scopus
  130. L. Tsacas and J. David, “Drosophila mauritiana n. sp. du groupe melanogaster de l'ile Maurice,” Bulletin de la Societe Entomologique de France, vol. 79, pp. 42–46, 1974. View at Google Scholar
  131. D. Wood, J. M. Ringo, and L. L. Johnson, “Analysis of courtship sequences of the hybrids between Drosophila melanogaster and Drosophila simulans,” Behavior Genetics, vol. 10, no. 5, pp. 459–466, 1980. View at Google Scholar · View at Scopus
  132. M. C. Carracedo, A. Asenjo, and P. Casares, “Genetics of Drosophila simulans male mating discrimination in crosses with D. melanogaster,” Heredity, vol. 91, no. 3, pp. 202–207, 2003. View at Publisher · View at Google Scholar · View at Scopus
  133. M. C. Carracedo, A. Asenjo, and P. Casares, “Inheritance mode of Drosophila simulans female mating propensity with D. melanogaster males,” Journal of Heredity, vol. 89, no. 1, pp. 102–104, 1998. View at Google Scholar · View at Scopus
  134. J. A. Jamart, M. C. Carracedo, and P. Casares, “Sexual isolation between Drosophila melanogaster females and D. simulans males. Male mating propensities versus success in hybridization,” Experientia, vol. 49, no. 6-7, pp. 596–598, 1993. View at Google Scholar · View at Scopus
  135. M. C. Carracedo, C. Suarez, and P. Casares, “Sexual isolation between Drosophila melanogaster, D. simulans and D. mauritiana: sex and species specific discrimination,” Genetica, vol. 108, no. 2, pp. 155–162, 2000. View at Publisher · View at Google Scholar · View at Scopus
  136. M. Kreitman and M. Aguade, “Genetic uniformity in two populations of Drosophila melanogaster as revealed by filter hybridization of four-nucleotide-recognizing restriction enzyme digests,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 10, pp. 3562–3566, 1986. View at Google Scholar · View at Scopus
  137. D. J. Begun and C. F. Aquadro, “African and North American populations of Drosophila melanogaster are very different at the DNA level,” Nature, vol. 365, no. 6446, pp. 548–550, 1993. View at Publisher · View at Google Scholar · View at Scopus
  138. L. S. Stevison, K. B. Hoehn, and M. A. Noor, “Effects of inversions on within- and between-species recombination and divergence,” Genome Biology and Evolution, vol. 3, pp. 830–841, 2011. View at Publisher · View at Google Scholar
  139. J. L. Feder, R. Gejji, T. H. Q. Powell, and P. Nosil, “Adaptive chromosomal divergence driven by mixed geographic mode of evolution,” Evolution, vol. 65, no. 8, pp. 2157–2170, 2011. View at Publisher · View at Google Scholar · View at Scopus
  140. D. B. Lowry and J. H. Willis, “A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation,” PLoS Biology, vol. 8, no. 9, Article ID e1000500, 2010. View at Publisher · View at Google Scholar · View at Scopus