Table of Contents
International Journal of Evolutionary Biology
Volume 2012 (2012), Article ID 596274, 10 pages
http://dx.doi.org/10.1155/2012/596274
Review Article

Alternative Splicing: A Potential Source of Functional Innovation in the Eukaryotic Genome

Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK

Received 11 February 2012; Revised 19 April 2012; Accepted 7 May 2012

Academic Editor: Ben-Yang Liao

Copyright © 2012 Lu Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. S. Lander, L. M. Linton, B. Birren et al., “Initial sequencing and analysis of the human genome,” Nature, vol. 409, no. 6822, pp. 860–921, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. J. C. Venter, M. D. Adams, E. W. Myers et al. et al., “The sequence of the human genome,” Science, vol. 291, no. 5507, pp. 1304–1351, 2001. View at Publisher · View at Google Scholar
  3. H. R. Crollius, O. Jaillon, A. Bernot et al., “Estimate of human gene number provided by genome-wide analysis using Tetraodon nigroviridis DNA sequence,” Nature Genetics, vol. 25, no. 2, pp. 235–238, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. B. R. Graveley, “Alternative splicing: increasing diversity in the proteomic world,” Trends in Genetics, vol. 17, no. 2, pp. 100–107, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Kim, A. V. Alekseyenko, M. Roy, and C. Lee, “The ASAP II database: analysis and comparative genomics of alternative splicing in 15 animal species,” Nucleic Acids Research, vol. 35, no. 1, pp. D93–D98, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. T. W. Nilsen and B. R. Graveley, “Expansion of the eukaryotic proteome by alternative splicing,” Nature, vol. 463, no. 7280, pp. 457–463, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. E. T. Wang, R. Sandberg, S. J. Luo et al., “Alternative isoform regulation in human tissue transcriptomes,” Nature, vol. 456, no. 7221, pp. 470–476, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. Q. Pan, O. Shai, L. J. Lee, B. J. Frey, and B. J. Blencowe, “Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing,” Nature Genetics, vol. 40, pp. 1413–1415, 2008. View at Google Scholar
  9. S. Stamm, S. Ben-Ari, I. Rafalska et al., “Function of alternative splicing,” Gene, vol. 344, pp. 1–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. B. R. Graveley, A. N. Brooks, J. W. Carlson et al., “The developmental transcriptome of Drosophila melanogaster,” Nature, vol. 471, no. 7339, pp. 473–479, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. S. A. Filichkin, H. D. Priest, S. A. Givan et al., “Genome-wide mapping of alternative splicing in Arabidopsis thaliana,” Genome Research, vol. 20, no. 1, pp. 45–58, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. L. T. Chow, R. E. Gelinas, T. R. Broker, and R. J. Roberts, “An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA,” Cell, vol. 12, no. 1, pp. 1–8, 1977. View at Google Scholar · View at Scopus
  13. S. M. Berget, C. Moore, and P. A. Sharp, “Spliced segments at the 5′ terminus of adenovirus 2 late mRNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 8, pp. 3171–3175, 1977. View at Google Scholar · View at Scopus
  14. F. W. Alt, A. L. M. Bothwell, M. Knapp et al., “Synthesis of secreted and membrane-bound immunoglobulin mu heavy chains is directed by mRNAs that differ at their 3′ ends,” Cell, vol. 20, no. 2, pp. 293–301, 1980. View at Google Scholar · View at Scopus
  15. P. Early, J. Rogers, M. Davis et al., “Two mRNAs can be produced from a single immunoglobulin μ gene by alternative RNA processing pathways,” Cell, vol. 20, no. 2, pp. 313–319, 1980. View at Google Scholar · View at Scopus
  16. I. I. Artamonova and M. S. Gelfand, “Comparative genomics and evolution of alternative splicing: the pessimists' sciene,” Chemical Reviews, vol. 107, no. 8, pp. 3407–3430, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. E. M. Zdobnov and R. Apweiler, “InterProScan—an integration platform for the signature-recognition methods in InterPro,” Bioinformatics, vol. 17, no. 9, pp. 847–848, 2001. View at Google Scholar · View at Scopus
  18. A. Bateman, L. Coin, R. Durbin et al., “The Pfam protein families database,” Nucleic Acids Research, vol. 32, pp. D138–D141, 2004. View at Google Scholar · View at Scopus
  19. J. D. Bendtsen, H. Nielsen, G. von Heijne, and S. Brunak, “Improved prediction of signal peptides: SignalP 3.0,” Journal of Molecular Biology, vol. 340, no. 4, pp. 783–795, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Krogh, B. Larsson, G. von Heijne, and E. L. L. Sonnhammer, “Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes,” Journal of Molecular Biology, vol. 305, no. 3, pp. 567–580, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Nakai and P. Horton, “PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization,” Trends in Biochemical Sciences, vol. 24, no. 1, pp. 34–35, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. D. B. Malko, V. J. Makeev, A. A. Mironov, and M. S. Gelfand, “Evolution of exon-intron structure and alternative splicing in fruit flies and malarial mosquito genomes,” Genome Research, vol. 16, no. 4, pp. 505–509, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Ast, “How did alternative splicing evolve?” Nature Reviews Genetics, vol. 5, no. 10, pp. 773–782, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Kim, A. Magen, and G. Ast, “Different levels of alternative splicing among eukaryotes,” Nucleic Acids Research, vol. 35, no. 1, pp. 125–131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. B. B. Wang and V. Brendel, “Genomewide comparative analysis of alternative splicing in plants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 18, pp. 7175–7180, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Kim, A. Goren, and G. Ast, “Alternative splicing: current perspectives,” BioEssays, vol. 30, no. 1, pp. 38–47, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Chen and J. L. Manley, “Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches,” Nature Reviews Molecular Cell Biology, vol. 10, no. 11, pp. 741–754, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. B. M. N. Brinkman, “Splice variants as cancer biomarkers,” Clinical Biochemistry, vol. 37, no. 7, pp. 584–594, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. J. P. Venables, “Unbalanced alternative splicing and its significance in cancer,” BioEssays, vol. 28, no. 4, pp. 378–386, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. G. S. Wang and T. A. Cooper, “Splicing in disease: disruption of the splicing code and the decoding machinery,” Nature Reviews Genetics, vol. 8, no. 10, pp. 749–761, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. N. López-Bigas, B. Audit, C. Ouzounis, G. Parra, and R. Guigó, “Are splicing mutations the most frequent cause of hereditary disease?” FEBS Letters, vol. 579, no. 9, pp. 1900–1903, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Yu, P. A. Maroney, J. A. Denker et al., “Dynamic regulation of alternative splicing by silencers that modulate 5′ splice site competition,” Cell, vol. 135, no. 7, pp. 1224–1236, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. T. A. Hughes, “Regulation of gene expression by alternative untranslated regions,” Trends in Genetics, vol. 22, no. 3, pp. 119–122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. R. F. Luco and T. Misteli, “More than a splicing code: integrating the role of RNA, chromatin and non-coding RNA in alternative splicing regulation,” Current Opinion in Genetics & Development, vol. 21, no. 4, pp. 366–372, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. B. R. Graveley, “Alternative splicing: regulation without regulators,” Nature Structural & Molecular Biology, vol. 16, no. 1, pp. 13–15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. R. F. Luco, Q. Pan, K. Tominaga, B. J. Blencowe, O. M. Pereira-Smith, and T. Misteli, “Regulation of alternative splicing by histone modifications,” Science, vol. 327, no. 5968, pp. 996–1000, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Shukla, E. Kavak, M. Gregory et al., “CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing,” Nature, vol. 479, no. 7371, pp. 74–79, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. R. F. Luco, M. Allo, I. E. Schor, A. R. Kornblihtt, and T. Misteli, “Epigenetics in alternative pre-mRNA splicing,” Cell, vol. 144, no. 1, pp. 16–26, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Adams, L. Altucci, S. E. Antonarakis et al., “BLUEPRINT to decode the epigenetic signature written in blood,” Nature Biotechnology, vol. 30, no. 3, pp. 224–226, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Barash, J. A. Calarco, W. Gao et al., “Deciphering the splicing code,” Nature, vol. 465, no. 7294, pp. 53–59, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. E. W. Sayers, T. Barrett, D. A. Benson et al., “Database resources of the National Center for Biotechnology Information,” Nucleic Acids Research, vol. 37, no. 1, pp. D5–D15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. S. H. Nagaraj, R. B. Gasser, and S. Ranganathan, “A hitchhiker's guide to expressed sequence tag (EST) analysis,” Briefings in Bioinformatics, vol. 8, no. 1, pp. 6–21, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. M. S. Boguski, T. M. J. Lowe, and C. M. Tolstoshev, “dbEST—database for ‘expressed sequence tags’,” Nature Genetics, vol. 4, no. 4, pp. 332–333, 1993. View at Publisher · View at Google Scholar · View at Scopus
  44. J. M. Johnson, J. Castle, P. Garrett-Engele et al., “Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays,” Science, vol. 302, no. 5653, pp. 2141–2144, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. Z. Wang, M. Gerstein, and M. Snyder, “RNA-Seq: a revolutionary tool for transcriptomics,” Nature Reviews Genetics, vol. 10, no. 1, pp. 57–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. G. Robertson, J. Schein, R. Chiu et al., “De novo assembly and analysis of RNA-seq data,” Nature Methods, vol. 7, no. 11, pp. 909–912, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. J. A. Martin and Z. Wang, “Next-generation transcriptome assembly,” Nature Reviews Genetics, vol. 12, no. 10, pp. 671–682, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. R. D. Hawkins, G. C. Hon, and B. Ren, “Next-generation genomics: an integrative approach,” Nature Reviews Genetics, vol. 11, no. 7, pp. 476–486, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. F. Ozsolak and P. M. Milos, “RNA sequencing: advances, challenges and opportunities,” Nature Reviews Genetics, vol. 12, no. 2, pp. 87–98, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Mortazavi, B. A. Williams, K. McCue, L. Schaeffer, and B. Wold, “Mapping and quantifying mammalian transcriptomes by RNA-Seq,” Nature Methods, vol. 5, no. 7, pp. 621–628, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. H. J. Kang, Y. I. Kawasawa, F. Cheng et al., “Spatio-temporal transcriptome of the human brain,” Nature, vol. 478, no. 7370, pp. 483–489, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Bhasi, P. Philip, V. T. Sreedharan, and P. Senapathy, “AspAlt: a tool for inter-database, inter-genomic and user-specific comparative analysis of alternative transcription and alternative splicing in 46 eukaryotes,” Genomics, vol. 94, no. 1, pp. 48–54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Lee, B. Kim, Y. Shin et al., “ECgene: an alternative splicing database update,” Nucleic Acids Research, vol. 35, no. 1, pp. D99–D103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. G. Koscielny, V. Le Texier, C. Gopalakrishnan et al., “ASTD: the alternative splicing and transcript diversity database,” Genomics, vol. 93, no. 3, pp. 213–220, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Brett, H. Pospisil, J. Valcárcel, J. Reich, and P. Bork, “Alternative splicing and genome complexity,” Nature Genetics, vol. 30, no. 1, pp. 29–30, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. Z. Y. Kan, D. States, and W. Gish, “Selecting for functional alternative splices in ESTs,” Genome Research, vol. 12, no. 12, pp. 1837–1845, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Lynch and J. S. Conery, “The origins of genome complexity,” Science, vol. 302, no. 5649, pp. 1401–1404, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. K. D. Whitney and T. Garland, “Did genetic drift drive increases in genome complexity?” PLoS Genetics, vol. 6, no. 8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. Q. Xu and C. Lee, “Discovery of novel splice forms and functional analysis of cancer-specific alternative splicing in human expressed sequences,” Nucleic Acids Research, vol. 31, no. 19, pp. 5635–5643, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. R. I. Skotheim and M. Nees, “Alternative splicing in cancer: noise, functional, or systematic?” The International Journal of Biochemistry & Cell Biology, vol. 39, no. 7-8, pp. 1432–1449, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. E. Kim, A. Goren, and G. Ast, “Insights into the connection between cancer and alternative splicing,” Trends in Genetics, vol. 24, no. 1, pp. 7–10, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. R. E. Green, B. P. Lewis, R. T. Hillman et al., “Widespread predicted nonsense-mediated mRNA decay of alternatively-spliced transcripts of human normal and disease genes,” Bioinformatics, vol. 19, no. 1, pp. i118–i121, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. B. P. Lewis, R. E. Green, and S. E. Brenner, “Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 1, pp. 189–192, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. Z. Zhang, D. Xin, P. Wang et al., “Noisy splicing, more than expression regulation, explains why some exons are subject to nonsense-mediated mRNA decay,” BMC Biology, vol. 7, article 23, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. Z. Su, J. Wang, J. Yu, X. Huang, and X. Gu, “Evolution of alternative splicing after gene duplication,” Genome Research, vol. 16, no. 2, pp. 182–189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. J. K. Pickrell, A. A. Pai, Y. Gilad, and J. K. Pritchard, “Noisy splicing drives mRNA isoform diversity in human cells,” PLoS Genetics, vol. 6, no. 12, Article ID e1001236, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. L. Chen, J. M. Tovar-Corona, and A. O. Urrutia, “Increased levels of noisy splicing in cancers, but not for oncogene-derived transcripts,” Human Molecular Genetics, vol. 20, no. 22, pp. 4422–4429, 2011. View at Google Scholar
  68. T. A. Thanaraj, F. Clark, and J. Muilu, “Conservation of human alternative splice events in mouse,” Nucleic Acids Research, vol. 31, no. 10, pp. 2544–2552, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. Q. Pan, M. A. Bakowski, Q. Morris et al., “Alternative splicing of conserved exons is frequently species-specific in human and mouse,” Trends in Genetics, vol. 21, no. 2, pp. 73–77, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. J. M. Mudge, A. Frankish, J. Fernandez-Banet et al., “The origins, evolution and functional potential of alternative splicing in vertebrates,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2949–2959, 2011. View at Google Scholar
  71. M. Irimia, J. L. Rukov, D. Penny, J. Garcia-Fernandez, J. Vinther, and S. W. Roy, “Widespread evolutionary conservation of alternatively spliced exons in Caenorhabditis,” Molecular Biology and Evolution, vol. 25, no. 2, pp. 375–382, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Irimia, J. L. Rukov, S. W. Roy, J. Vinther, and J. Garcia-Fernandez, “Quantitative regulation of alternative splicing in evolution and development,” BioEssays, vol. 31, no. 1, pp. 40–50, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Long, E. Betrán, K. Thornton, and W. Wang, “The origin of new genes: glimpses from the young and old,” Nature Reviews Genetics, vol. 4, no. 11, pp. 865–875, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. P. Dehal and J. L. Boore, “Two rounds of whole genome duplication in the ancestral vertebrate,” PLoS Biology, vol. 3, no. 10, pp. 1700–1708, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. N. M. Kopelman, D. Lancet, and I. Yanai, “Alternative splicing and gene duplication are inversely correlated evolutionary mechanisms,” Nature Genetics, vol. 37, no. 6, pp. 588–589, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. L. Jin, K. Kryukov, J. C. Clemente et al., “The evolutionary relationship between gene duplication and alternative splicing,” Gene, vol. 427, no. 1-2, pp. 19–31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. A. L. Hughes and R. Friedman, “Alternative splicing, gene duplication and connectivity in the genetic interaction network of the nematode worm Caenorhabditis elegans,” Genetica, vol. 134, no. 2, pp. 181–186, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. H. Lin, S. Ouyang, A. Egan et al., “Characterization of paralogous protein families in rice,” BMC Plant Biology, vol. 8, article 18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. J. Roux and M. Robinson-Rechavi, “Age-dependent gain of alternative splice forms and biased duplication explain the relation between splicing and duplication,” Genome Research, vol. 21, no. 3, pp. 357–363, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. D. Talavera, C. Vogel, M. Orozco, S. A. Teichmann, and X. de la Cruz, “The (In)dependence of alternative splicing and gene duplication,” PLoS Computational Biology, vol. 3, no. 3, pp. 375–388, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. D. Wegmann, I. Dupanloup, and L. Excoffier, “Width of gene expression profile drives alternative splicing,” PLoS ONE, vol. 3, no. 10, article e3587, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. E. L. Heinzen, D. Ge, K. D. Cronin et al., “Tissue-specific genetic control of splicing: implications for the study of complex traits,” PLoS Biology, vol. 6, no. 12, Article ID e1000001, pp. 2869–2879, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. B. Hartmann, R. Castelo, B. Miñana et al., “Distinct regulatory programs establish widespread sex-specific alternative splicing in Drosophila melanogaster,” RNA, vol. 17, no. 3, pp. 453–468, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. R. Blekhman, J. C. Marioni, P. Zumbo, M. Stephens, and Y. Gilad, “Sex-specific and lineage-specific alternative splicing in primates,” Genome Research, vol. 20, no. 2, pp. 180–189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. D. W. MacLean, T. H. Meedel, and K. E. M. Hastings, “Tissue-specific alternative splicing of ascidian troponin I isoforms: redesign of a protein isoform-generating mechanism during chordate evolution,” The Journal of Biological Chemistry, vol. 272, no. 51, pp. 32115–32120, 1997. View at Publisher · View at Google Scholar · View at Scopus
  86. W. P. Yu, S. Brenner, and B. Venkatesh, “Duplication, degeneration and subfunctionalization of the nested synapsin-Timp genes in Fugu,” Trends in Genetics, vol. 19, no. 4, pp. 180–183, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. J. A. Lister, J. Close, and D. W. Raible, “Duplicate mitf genes in zebrafish: complementary expression and conservation of melanogenic potential,” Developmental Biology, vol. 237, no. 2, pp. 333–344, 2001. View at Publisher · View at Google Scholar · View at Scopus
  88. J. Altschmied, J. Delfgaauw, B. Wilde et al., “Subfunctionalization of duplicate mitf genes associated with differential degeneration of alternative exons in fish,” Genetics, vol. 161, no. 1, pp. 259–267, 2002. View at Google Scholar · View at Scopus
  89. S. Short and L. Z. Holland, “The evolution of alternative splicing in the Pax family: the view from the basal chordate amphioxus,” Journal of Molecular Evolution, vol. 66, no. 6, pp. 605–620, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. L. Chen, Q. J. Zhang, W. Wang, and Y. Q. Wang, “Spatiotemporal expression of Pax genes in amphioxus: insights into Pax-related organogenesis and evolution,” Science China Life Sciences, vol. 53, no. 8, pp. 1031–1040, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. T. D. Barber, M. C. Barber, T. E. Cloutier, and T. B. Friedman, “PAX3 gene structure, alternative splicing and evolution,” Gene, vol. 237, no. 2, pp. 311–319, 1999. View at Publisher · View at Google Scholar · View at Scopus
  92. S. Singh, R. Mishra, N. A. Arango, J. M. Deng, R. R. Behringer, and G. F. Saunders, “Iris hypoplasia in mice that lack the alternatively spliced Pax6(5a) isoform,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 10, pp. 6812–6815, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. L. Z. Holland and S. Short, “Alternative splicing in development and function of chordate endocrine systems: a focus on Pax genes,” Integrative and Comparative Biology, vol. 50, no. 1, pp. 22–34, 2010. View at Publisher · View at Google Scholar · View at Scopus