Table of Contents
International Journal of Evolutionary Biology
Volume 2012, Article ID 679045, 9 pages
http://dx.doi.org/10.1155/2012/679045
Review Article

Horizontal Transfer and the Evolution of Host-Pathogen Interactions

1Albacete Science and Technology Park, 02006 Albacete, Spain
2Regional Center for Biomedical Research (CRIB), The University of Castilla-La Mancha, Calle Almansa 14, 02006 Albacete, Spain

Received 3 September 2012; Accepted 26 October 2012

Academic Editor: Stephane Boissinot

Copyright © 2012 Elena de la Casa-Esperón. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. J. Keeling, “Functional and ecological impacts of horizontal gene transfer in eukaryotes,” Current Opinion in Genetics and Development, vol. 19, no. 6, pp. 613–619, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. A. S. Lalani and G. McFadden, “Evasion and exploitation of chemokines by viruses,” Cytokine and Growth Factor Reviews, vol. 10, no. 3-4, pp. 219–233, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. D. M. Haig, “Subversion and piracy: DNA viruses and immune evasion,” Research in Veterinary Science, vol. 70, no. 3, pp. 205–219, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. B. A. Roy and J. W. Kirchner, “Evolutionary dynamics of pathogen resistance and tolerance,” Evolution, vol. 54, no. 1, pp. 51–63, 2000. View at Google Scholar · View at Scopus
  5. M. R. Miller, A. White, and M. Boots, “The evolution of host resistance: tolerance and control as distinct strategies,” Journal of Theoretical Biology, vol. 236, no. 2, pp. 198–207, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. P. M. Murphy, “Molecular mimicry and the generation of host defense protein diversity,” Cell, vol. 72, no. 6, pp. 823–826, 1993. View at Publisher · View at Google Scholar · View at Scopus
  7. M. R. Patel, Y.-M. Loo, S. M. Horner, M. Gale Jr., and H. S. Malik, “Convergent evolution of escape from hepaciviral antagonism in primates,” PLoS Biology, vol. 10, no. 3, Article ID e1001282, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. M. J. Roossinck, “The good viruses: viral mutualistic symbioses,” Nature Reviews Microbiology, vol. 9, no. 2, pp. 99–108, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. A. L. Hughes and R. Friedman, “Poxvirus genome evolution by gene gain and loss,” Molecular Phylogenetics and Evolution, vol. 35, no. 1, pp. 186–195, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Filée, P. Siguier, and M. Chandler, “I am what I eat and I eat what I am: acquisition of bacterial genes by giant viruses,” Trends in Genetics, vol. 23, no. 1, pp. 10–15, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. E. V. Koonin, K. S. Makarova, and L. Aravind, “Horizontal gene transfer in prokaryotes: quantification and classification,” Annual Review of Microbiology, vol. 55, pp. 709–742, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. J. P. Gogarten and J. P. Townsend, “Horizontal gene transfer, genome innovation and evolution,” Nature Reviews Microbiology, vol. 3, no. 9, pp. 679–687, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Boto, “Horizontal gene transfer in evolution: facts and challenges,” Proceedings of the Royal Society B, vol. 277, no. 1683, pp. 819–827, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. E. J. Lefkowitz, C. Wang, and C. Upton, “Poxviruses: past, present and future,” Virus Research, vol. 117, no. 1, pp. 105–118, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. P. J. Keeling and J. D. Palmer, “Horizontal gene transfer in eukaryotic evolution,” Nature Reviews Genetics, vol. 9, no. 8, pp. 605–618, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Moran, D. Fredman, P. Szczesny, M. Grynberg, and U. Technau, “Recurrent horizontal transfer of bacterial toxin genes to eukaryotes,” Molecular Biology and Evolution, vol. 29, no. 9, pp. 2223–2230, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. E. L. S. Loreto, C. M. A. Carareto, and P. Capy, “Revisiting horizontal transfer of transposable elements in Drosophila,” Heredity, vol. 100, no. 6, pp. 545–554, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Syvanen, “Evolutionary implications of horizontal gene transfer,” Annual Review of Genetics, vol. 46, pp. 341–358, 2012. View at Google Scholar
  19. S. Schaack, C. Gilbert, and C. Feschotte, “Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution,” Trends in Ecology and Evolution, vol. 25, no. 9, pp. 537–546, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. J. O. Andersson, “Lateral gene transfer in eukaryotes,” Cellular and Molecular Life Sciences, vol. 62, no. 11, pp. 1182–1197, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Hao and G. Brian Golding, “The fate of laterally transferred genes: life in the fast lane to adaptation or death,” Genome Research, vol. 16, no. 5, pp. 636–643, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Novick, J. Smith, D. Ray, and S. Boissinot, “Independent and parallel lateral transfer of DNA transposons in tetrapod genomes,” Gene, vol. 449, no. 1-2, pp. 85–94, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Bock, “The give-and-take of DNA: horizontal gene transfer in plants,” Trends in Plant Science, vol. 15, no. 1, pp. 11–22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. T. A. Richards, R. P. Hirt, B. A. P. Williams, and T. M. Embley, “Horizontal gene transfer and the evolution of parasitic protozoa,” Protist, vol. 154, no. 1, pp. 17–32, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Haugen, D. M. Simon, and D. Bhattacharya, “The natural history of group I introns,” Trends in Genetics, vol. 21, no. 2, pp. 111–119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. T. A. Richards, D. M. Soanes, P. G. Foster, G. Leonard, C. R. Thornton, and N. J. Talbot, “Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi,” Plant Cell, vol. 21, no. 7, pp. 1897–1911, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Mehrabi, A. H. Bahkali, K. A. Abd-Elsalam et al., “Horizontal gene and chromosome transfer in plant pathogenic fungi affecting host range,” FEMS Microbiology Reviews, vol. 35, no. 3, pp. 542–554, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. E. A. Gladyshev, M. Meselson, and I. R. Arkhipova, “Massive horizontal gene transfer in bdelloid rotifers,” Science, vol. 320, no. 5880, pp. 1210–1213, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. G. L. Wallau, M. F. Ortiz, and E. L. S. Loreto, “Horizontal transposon transfer in eukarya: detection, bias, and perspectives,” Genome Biology and Evolution, vol. 4, no. 8, pp. 689–699, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. S. B. Daniels, K. R. Peterson, L. D. Strausbaugh, M. G. Kidwell, and A. Chovnik, “Evidence for horizontal transmission of the P transposable element between Drosophila species,” Genetics, vol. 124, no. 2, pp. 339–355, 1990. View at Google Scholar · View at Scopus
  31. I. K. Jordan, L. V. Matyunina, and J. F. McDonald, “Evidence for the recent horizontal transfer of long terminal repeat retrotransposon,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 22, pp. 12621–12625, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Haring, S. Hagemann, and W. Pinsker, “Ancient and recent horizontal invasions of drosophilids by P elements,” Journal of Molecular Evolution, vol. 51, no. 6, pp. 577–586, 2000. View at Google Scholar · View at Scopus
  33. C. T. Yohn, Z. Jiang, S. D. McGrath et al., “Lineage-specific expansions of retroviral insertions within the genomes of African great apes but not humans and orangutans,” PLoS Biology, vol. 3, no. 4, p. e110, 2005. View at Google Scholar · View at Scopus
  34. N. A. Moran and T. Jarvik, “Lateral transfer of genes from fungi underlies carotenoid production in aphids,” Science, vol. 328, no. 5978, pp. 624–627, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. E. G. Danchin, “What Nematode genomes tell us about the importance of horizontal gene transfers in the evolutionary history of animals,” Mobile Genetic Elements, vol. 1, pp. 269–273, 2011. View at Google Scholar
  36. D. Kordiš and F. Gubenšek, “Unusual horizontal transfer of a long interspersed nuclear element between distant vertebrate classes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 18, pp. 10704–10709, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. J. G. de Boer, R. Yazawa, W. S. Davidson, and B. F. Koop, “Bursts and horizontal evolution of DNA transposons in the speciation of pseudotetraploid salmonids,” BMC Genomics, vol. 8, article 422, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. J. K. Pace II, C. Gilbert, M. S. Clark, and C. Feschotte, “Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 44, pp. 17023–17028, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Gilbert, S. Schaack, J. K. Pace II, P. J. Brindley, and C. Feschotte, “A role for host-parasite interactions in the horizontal transfer of transposons across phyla,” Nature, vol. 464, no. 7293, pp. 1347–1350, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Gilbert, S. S. Hernandez, J. Flores-Benabib, E. N. Smith, and C. Feschotte, “Rampant horizontal transfer of SPIN transposons in squamate reptiles,” Molecular Biology and Evolution, vol. 29, no. 2, pp. 503–515, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Laha, A. Loukas, S. Wattanasatitarpa et al., “The bandit, a new DNA transposon from a hookworm—possible horizontal genetic transfer between host and parasite,” PLoS Neglected Tropical Diseases, vol. 1, no. 1, article e35, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. M. M. Hecht, N. Nitz, P. F. Araujo et al., “Inheritance of DNA transferred from American trypanosomes to human hosts,” PLoS ONE, vol. 5, no. 2, Article ID e9181, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. M. A. Houck, J. B. Clark, K. R. Peterson, and M. G. Kidwell, “Possible horizontal transfer of Drosophila genes by the mite Proctolaelaps regalis,” Science, vol. 253, no. 5024, pp. 1125–1129, 1991. View at Google Scholar · View at Scopus
  44. J. C. Dunning Hotopp, M. E. Clark, D. C. S. G. Oliveira et al., “Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes,” Science, vol. 317, no. 5845, pp. 1753–1756, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. N. Nikoh, K. Tanaka, F. Shibata et al., “Wolbachia genome integrated in an insect chromosome: evolution and fate of laterally transferred endosymbiont genes,” Genome Research, vol. 18, no. 2, pp. 272–280, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Yoshiyama, Z. Tu, Y. Kainoh, H. Honda, T. Shono, and K. Kimura, “Possible horizontal transfer of a transposable element from host to parasitoid,” Molecular Biology and Evolution, vol. 18, no. 10, pp. 1952–1958, 2001. View at Google Scholar · View at Scopus
  47. J. Filée, “Lateral gene transfer, lineage-specific gene expansion and the evolution of Nucleo Cytoplasmic Large DNA viruses,” Journal of Invertebrate Pathology, vol. 101, no. 3, pp. 169–171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. A. L. Hughes, S. Irausquin, and R. Friedman, “The evolutionary biology of poxviruses,” Infection, Genetics and Evolution, vol. 10, no. 1, pp. 50–59, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. O. Piskurek and N. Okada, “Poxviruses as possible vectors for horizontal transfer of retroposons from reptiles to mammals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 29, pp. 12046–12051, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. D. J. Taylor and J. Bruenn, “The evolution of novel fungal genes from non-retroviral RNA viruses,” BMC Biology, vol. 7, article 88, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. E. V. Koonin, “Taming of the shrewd: novel eukaryotic genes from RNA viruses,” BMC Biology, vol. 8, article 2, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Liu, Y. Fu, D. Jiang et al., “Widespread horizontal gene transfer from double-stranded RNA viruses to eukaryotic nuclear genomes,” Journal of Virology, vol. 84, no. 22, pp. 11876–11887, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. B. E. Bernstein, E. Birney, I. Dunham et al., “An integrated encyclopedia of DNA elements in the human genome,” Nature, vol. 489, no. 7414, pp. 57–74, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. L. J. Ma, H. C. Van Der Does, K. A. Borkovich et al., “Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium,” Nature, vol. 464, no. 7287, pp. 367–373, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Haegeman, J. T. Jones, and E. G. J. Danchin, “Horizontal gene transfer in nematodes: a catalyst for plant parasitism?” Molecular Plant-Microbe Interactions, vol. 24, no. 8, pp. 879–887, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. V. Nembaware, C. Seoighe, M. Sayed, and C. Gehring, “A plant natriuretic peptide-like gene in the bacterial pathogen Xanthomonas axonopodis may induce hyper-hydration in the plant host: a hypothesis of molecular mimicry,” BMC Evolutionary Biology, vol. 4, article 10, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. K. S. De Felipe, S. Pampou, O. S. Jovanovic et al., “Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer,” Journal of Bacteriology, vol. 187, no. 22, pp. 7716–7726, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. B. S. Garavaglia, L. Thomas, and N. Gottig, “Shedding light on the role of photosynthesis in pathogen colonization and host defense,” Communicative and Integrative Biology, vol. 3, pp. 382–384, 2010. View at Google Scholar
  59. C. C. Davis and K. J. Wurdack, “Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales,” Science, vol. 305, no. 5684, pp. 676–678, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Yoshida, S. Maruyama, H. Nozaki, and K. Shirasu, “Horizontal gene transfer by the parasitic plant striga hermonthica,” Science, vol. 328, no. 5982, p. 1128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. Z. Xi, R. K. Bradley, K. J. Wurdack et al., “Horizontal transfer of expressed genes in a parasitic flowering plant,” BMC Genomics, vol. 13, no. 1, article 227, 2012. View at Publisher · View at Google Scholar · View at Scopus
  62. G. McFadden, K. Graham, K. Ellison et al., “Interruption of cytokine networks by poxviruses: lessons from myxoma virus,” Journal of Leukocyte Biology, vol. 57, no. 5, pp. 731–738, 1995. View at Google Scholar · View at Scopus
  63. S. N. Shchelkunov, “Immunomodulatory proteins of orthopoxviruses,” Molekulyarnaya Biologiya, vol. 37, no. 1, pp. 41–53, 2003. View at Google Scholar · View at Scopus
  64. B. T. Seet, J. B. Johnston, C. R. Brunetti et al., “Poxviruses and immune evasion,” Annual Review of Immunology, vol. 21, pp. 377–423, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. B. Moss and J. L. Shisler, “Immunology 101 at poxvirus U: immune evasion genes,” Seminars in Immunology, vol. 13, no. 1, pp. 59–66, 2001. View at Publisher · View at Google Scholar · View at Scopus
  66. K. A. Bratke and A. McLysaght, “Identification of multiple independent horizontal gene transfers into poxviruses using a comparative genomics approach,” BMC Evolutionary Biology, vol. 8, no. 1, article 67, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. O. Bustos, S. Naik, G. Ayers et al., “Evolution of the Schlafen genes, a gene family associated with embryonic lethality, meiotic drive, immune processes and orthopoxvirus virulence,” Gene, vol. 447, no. 1, pp. 1–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Filée, N. Pouget, and M. Chandler, “Phylogenetic evidence for extensive lateral acquisition of cellular genes by Nucleocytoplasmic large DNA viruses,” BMC Evolutionary Biology, vol. 8, no. 1, article 320, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. M. R. Odom, R. Curtis Hendrickson, and E. J. Lefkowitz, “Poxvirus protein evolution: family wide assessment of possible horizontal gene transfer events,” Virus Research, vol. 144, no. 1-2, pp. 233–249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. R. Holzerlandt, C. Orengo, P. Kellam, and M. Mar Albà, “Identification of new herpesvirus gene homologs in the human genome,” Genome Research, vol. 12, no. 11, pp. 1739–1748, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Fu, R. Deng, J. Wang, and X. Wang, “Detection and analysis of horizontal gene transfer in herpesvirus,” Virus Research, vol. 131, no. 1, pp. 65–76, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Fu, R. Deng, J. Wang, and X. Wang, “Horizontal gene transfer in herpesviruses identified by using support vector machine,” Acta Virologica, vol. 55, no. 3, pp. 203–217, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. A. Alcami and S. A. Lira, “Modulation of chemokine activity by viruses,” Current Opinion in Immunology, vol. 22, no. 4, pp. 482–487, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. Y. Liu, R. De Waal Malefyt, F. Briere et al., “The EBV IL-10 homologue is a selective agonist with impaired binding to the IL-10 receptor,” Journal of Immunology, vol. 158, no. 2, pp. 604–613, 1997. View at Google Scholar · View at Scopus
  75. P. Vieira, R. De Waal-Malefyt, M. N. Dang et al., “Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones: homology to Epstein-Barr virus open reading frame BCRFI,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 4, pp. 1172–1176, 1991. View at Google Scholar · View at Scopus
  76. K. Kanai, Y. Satoh, H. Yamanaka et al., “The vIL-10 gene of the Epstein-Barr virus (EBV) is conserved in a stable manner except for a few point mutations in various EBV isolates,” Virus Genes, vol. 35, no. 3, pp. 563–569, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. S. V. Kotenko, S. Saccani, L. S. Izotova, O. V. Mirochnitchenko, and S. Pestka, “Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10),” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 4, pp. 1695–1700, 2000. View at Publisher · View at Google Scholar · View at Scopus
  78. M. G. Kurilla, S. Swaminathan, R. M. Welsh, E. Kieff, and R. R. Brutkiewicz, “Effects of virally expressed interleukin-10 on vaccinia virus infection in mice,” Journal of Virology, vol. 67, no. 12, pp. 7623–7628, 1993. View at Google Scholar · View at Scopus
  79. A. Chan, M. Baird, A. A. Mercer, and S. B. Fleming, “Maturation and function of human dendritic cells are inhibited by orf virus-encoded interleukin-10,” Journal of General Virology, vol. 87, no. 11, pp. 3177–3181, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. A. L. Hughes, “Origin and evolution of viral interleukin-10 and other DNA virus genes with vertebrate homologues,” Journal of Molecular Evolution, vol. 54, no. 1, pp. 90–101, 2002. View at Google Scholar · View at Scopus
  81. A. S. Lalani, K. Graham, K. Mossman et al., “The purified myxoma virus gamma interferon receptor homolog M-T7 interacts with the heparin-binding domains of chemokines,” Journal of Virology, vol. 71, no. 6, pp. 4356–4363, 1997. View at Google Scholar · View at Scopus
  82. B. Moss, J. L. Shisler, Y. Xiang, and T. G. Senkevich, “Immune-defense molecules of Molluscum contagiosum virus, a human poxvirus,” Trends in Microbiology, vol. 8, no. 10, pp. 473–477, 2000. View at Publisher · View at Google Scholar · View at Scopus
  83. N. W. Bartlett, L. Dumoutier, J. C. Renauld et al., “A new member of the interleukin 10-related cytokine family encoded by a poxvirus,” Journal of General Virology, vol. 85, no. 6, pp. 1401–1412, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. E. de la Casa-Esperon, “From mammals to viruses: the Schlafen genes in developmental, proliferative and immune processes,” BioMolecular Concepts, vol. 2, pp. 159–169, 2011. View at Google Scholar
  85. C. Gubse, R. Goodbody, A. Ecker et al., “Camelpox virus encodes a schlafen-like protein that affects orthopoxvirus virulence,” Journal of General Virology, vol. 88, no. 6, pp. 1667–1676, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. L. Liu, A. Lalani, E. Dai et al., “The vital anti-inflammatory chemokine-binding protein M-T7 reduces intimal hyperplasia after vascular injury,” Journal of Clinical Investigation, vol. 105, no. 11, pp. 1613–1621, 2000. View at Google Scholar · View at Scopus
  87. A. S. Lalani, J. W. Barrett, and G. McFadden, “Modulating chemokines: more lessons from viruses,” Immunology Today, vol. 21, no. 2, pp. 100–106, 2000. View at Publisher · View at Google Scholar · View at Scopus
  88. E. S. Barton, D. W. White, J. S. Cathelyn et al., “Herpesvirus latency confers symbiotic protection from bacterial infection,” Nature, vol. 447, no. 7142, pp. 326–329, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. D. W. White, R. Suzanne Beard, and E. S. Barton, “Immune modulation during latent herpesvirus infection,” Immunological Reviews, vol. 245, no. 1, pp. 189–208, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. M. C. Intrieri and M. Buiatti, “The horizontal transfer of Agrobacterium rhizogenes genes and the evolution of the genus Nicotiana,” Molecular Phylogenetics and Evolution, vol. 20, no. 1, pp. 100–110, 2001. View at Publisher · View at Google Scholar · View at Scopus
  91. J. P. Mower, S. Stefanović, G. J. Young, and J. D. Palmer, “Gene transfer from parasitic to host plants,” Nature, vol. 432, no. 7014, pp. 165–166, 2004. View at Google Scholar · View at Scopus
  92. L. P. Villarreal, “Viral ancestors of antiviral systems,” Viruses, vol. 3, no. 10, pp. 1933–1958, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. A. Stern and R. Sorek, “The phage-host arms race: shaping the evolution of microbes,” BioEssays, vol. 33, no. 1, pp. 43–51, 2011. View at Publisher · View at Google Scholar · View at Scopus
  94. R. Sorek, V. Kunin, and P. Hugenholtz, “CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea,” Nature Reviews Microbiology, vol. 6, no. 3, pp. 181–186, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. P. Horvath and R. Barrangou, “CRISPR/Cas, the immune system of Bacteria and Archaea,” Science, vol. 327, no. 5962, pp. 167–170, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. S. W. Ding, “RNA-based antiviral immunity,” Nature Reviews Immunology, vol. 10, no. 9, pp. 632–644, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. E. S. Lander, L. M. Linton, B. Birren et al., “Initial sequencing and analysis of the human genome,” Nature, vol. 409, no. 6822, pp. 860–921, 2001. View at Publisher · View at Google Scholar · View at Scopus
  98. Y. Yan, A. Buckler-White, K. Wollenberg, and C. A. Kozak, “Origin, antiviral function and evidence for positive selection of the gammaretrovirus restriction gene Fv1 in the genus Mus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 9, pp. 3259–3263, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. C. A. Kozak, “The mouse “xenotropic” gammaretroviruses and their XPR1 receptor,” Retrovirology, vol. 7, article 101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. M. R. Patel, M. Emerman, and H. S. Malik, “Paleovirology—ghosts and gifts of viruses past,” Current Opinion in Virology, vol. 1, no. 4, pp. 304–309, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. G. M. Taylor, Y. D. Gao, and A. Sanders, “Fv-4: identification of the defect in Env and the mechanism of resistance to ecotropic murine leukemia virus,” Journal of Virology, vol. 75, no. 22, pp. 11244–11248, 2001. View at Publisher · View at Google Scholar · View at Scopus
  102. B. Sanville, M. A. Dolan, K. Wollenberg et al., “Adaptive evolution of Mus Apobec3 includes retroviral insertion and positive selection at two clusters of residues flanking the substrate groove,” PLoS Pathogens, vol. 6, no. 7, Article ID e1000974, pp. 1–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. L. P. Villarreal, “The source of self: genetic parasites and the origin of adaptive immunity,” Annals of the New York Academy of Sciences, vol. 1178, pp. 194–232, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. L. Du Pasquier, “Speculations on the origin of the vertebrate immune system,” Immunology Letters, vol. 92, no. 1-2, pp. 3–9, 2004. View at Publisher · View at Google Scholar · View at Scopus