Table of Contents
International Journal of Evolutionary Biology
Volume 2012 (2012), Article ID 740605, 9 pages
http://dx.doi.org/10.1155/2012/740605
Review Article

A Phenotypic Point of View of the Adaptive Radiation of Crested Newts (Triturus cristatus Superspecies, Caudata, Amphibia)

1Institute of Zoology, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
2Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, 11000 Belgrade, Serbia

Received 12 July 2011; Revised 6 October 2011; Accepted 11 October 2011

Academic Editor: Kyoichi Sawamura

Copyright © 2012 Ana Ivanović et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Darwin, On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, John Murray, London, UK, 1859.
  2. S. J. Gould, Ontogeny and Phylogeny, Belknap Press, Cambridge, Mass, USA, 1977.
  3. C. P. Klingenberg, “Heterochrony and allometry: the analysis of evolutionary change in ontogeny,” Biological Reviews of the Cambridge Philosophical Society, vol. 73, no. 1, pp. 79–123, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. M. L. Zelditch and R. A. Moscarella, “Form, function, and life history: spatial and temporal dynamics of integration,” in Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes, M. Pigliucci and K. Preston, Eds., pp. 274–297, Oxford University Press, Oxford, UK, 2004. View at Google Scholar
  5. J. B. Losos, “Adaptive radiation, ecological opportunity, and evolutionary determinism,” The American Naturalist, vol. 175, no. 6, pp. 623–639, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. D. C. C. Andrew, “The ecological causes of evolution,” Trends in Ecology and Evolution, vol. 26, no. 10, pp. 514–522, 2011. View at Google Scholar
  7. T. F. Hansen and E. P. Martins, “Translating between microevolutionary process and macroevolutionary patterns: the correlation structure of interspecific data,” Evolution, vol. 50, no. 4, pp. 1404–1417, 1996. View at Google Scholar · View at Scopus
  8. C. P. Klingenberg, “Integration, modules and development: molecules to morphology to evolution,” in Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes, M. Pigliucci and K. Preston, Eds., pp. 213–230, Oxford University Press, Oxford, UK, 2004. View at Google Scholar
  9. L. J. Revell, L. J. Harmon, and D. C. Collar, “Phylogenetic signal, evolutionary process, and rate,” Systematic Biology, vol. 57, no. 4, pp. 591–601, 2008. View at Google Scholar · View at Scopus
  10. L. Gvoždik and R. Van Damme, “Triturus newts defy the running-swimming dilemma,” Evolution, vol. 60, no. 10, pp. 2110–2121, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. J. W. Arntzen, G. E. Themudo, and B. Wielstra, “The phylogeny of crested newts (Triturus cristatus superspecies): nuclear and mitochondrial genetic characters suggest a hard polytomy, in line with the paleogeography of the centre of origin,” Contributions to Zoology, vol. 76, no. 4, pp. 261–278, 2007. View at Google Scholar · View at Scopus
  12. A. Ivanović, T. Vukov, N. Tomašević, G. Džukić, and M. L. Kalezić, “Ontogeny of skull size and shape changes within a framework of biphasic lifestyle: case study of European newts (genus Triturus spp.),” Zoomorphology, vol. 126, no. 3, pp. 173–183, 2007. View at Google Scholar
  13. N. T. Kolarov, A. Ivanović, and M. L. Kalezić, “Morphological integration and ontogenetic niche shift: a study of crested newt limbs,” Journal of Experimental Zoology Part B, vol. 314, no. 4, pp. 296–305, 2011. View at Google Scholar
  14. B. Wielstra and J. W. Arntzen, “Unraveling the rapid radiation of crested newts (Triturus cristatus superspecies) using complete mitogenomic sequences,” BMC Evolutionary Biology, vol. 11, Article ID 162, 2011. View at Google Scholar
  15. B. Wielstra, G. E. Themudo, O. Güçlü, K. Olgun, N. A. Poyarkov, and J. W. Arntzen, “Cryptic crested newt diversity at the Eurasian transition: the mitochondrial DNA phylogeography of near eastern Triturus newts,” Molecular Phylogenetics and Evolution, vol. 56, no. 3, pp. 888–896, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Džukić, Tailed Amphibians (Caudata) of Serbia. A faunistic and zoogeographical study, regarding protection and conservation, Ph.D. thesis, Univeristy of Belgrade, Belgrade, Serbia, 1993.
  17. M. L. Kalezić, G. Džukić, G. Mesaroš, and J. Crnobrnja-Isailović, “The crested newt (Triturus cristatus superspecies) in ex-Yugoslavia: morphological structuring and distribution patterns,” The University Thought (Priština), vol. 4, no. 1, pp. 39–46, 1997. View at Google Scholar
  18. J. W. Arntzen, “Triturus cristatus Superspezies—Kammolch-Artenkreis. (Triturus cristatus (Laurenti, 1768)—Nördlicher Kammolch, Triturus carnifex (Laurenti, 1768)—Italienischer Kammolch. Triturus dobrogicus(Kiritzescu, 1903)—Donau-Kammolch, Triturus karelinii (Strauch, 1870)—Südlicher Kammolch),” in Handbuch detr Reptilien und Amphibiaen Europas, Band 4/IIA: Schwanzlurche (Urodela) IIA, W. Böhme, Ed., pp. 421–514, Aula-Verlag, Wiebelsheim, Germany, 2003. View at Google Scholar
  19. S. N. Litvinchuk, J. M. Rosanov, and L. J. Borkin, “Correlations of geographic distribution and temperature of embryonic development with the nuclear DNA content in the Salamandridae (Urodela, Amphibia),” Genome, vol. 50, no. 4, pp. 333–342, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Ivanović, M. Cvijanović, and M. L. Kalezić, “Ontogeny of body size and shape and metamorphosis: insights from the crested newts,” Journal of Zoology, vol. 283, no. 3, pp. 153–161, 2011. View at Google Scholar
  21. C. P. Klingenberg, “Evolution and development of shape: integrating quantitative approaches,” Nature Reviews Genetics, vol. 11, no. 9, pp. 623–635, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. F. L. Bookstein, Morphometric Tools for Landmarks Data: Geometry and Biology, vol. Cambridge University Press, Cambridge, UK, 1991.
  23. C. P. Klingenberg and N. A. Gidaszewski, “Testing and quantifying phylogenetic signals and homoplasy in morphometric data,” Systematic Biology, vol. 59, no. 3, pp. 245–261, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. W. P. Maddison, “Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree,” Systematic Zoology, vol. 40, no. 3, pp. 304–314, 1991. View at Google Scholar
  25. B. H. Mcardle and A. G. Rodrigo, “Estimating the ancestral states of a continuous-valued character using squared-change parsimony: an analytical solution,” Systematic Biology, vol. 43, no. 4, pp. 573–578, 1994. View at Google Scholar · View at Scopus
  26. F. J. Rohlf, “Comparative methods for the analysis of continuous variables: geometric interpretations,” Evolution, vol. 55, no. 11, pp. 2143–2160, 2001. View at Google Scholar · View at Scopus
  27. F. J. Rohlf, “Geometric morphometrics and phylogeny,” in Morphology, Shape, and Phylogeny, N. MacLeod and P.L. Forey, Eds., pp. 175–193, Taylor and Francis, London, UK, 2002. View at Google Scholar
  28. E. P. Martins and T. F. Hansen, “Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data,” American Naturalist, vol. 149, no. 4, pp. 646–667, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. C. P. Klingenberg, “MorphoJ: an integrated software package for geometric morphometrics,” Molecular Ecology Resources, vol. 11, no. 2, pp. 353–357, 2011. View at Google Scholar
  30. A. Ivanovic, N. Tomašević, G. Džukić, and M. L. Kalezić, “Evolutionary diversification of the limb skeleton in crested newts (Triturus cristatus superspecies, Caudata, Salamandridae),” Annales Zoologici Fennici, vol. 45, no. 6, pp. 527–535, 2008. View at Google Scholar · View at Scopus
  31. P. M. Magwene, “New tools for studying integration and modularity,” Evolution, vol. 55, no. 9, pp. 1734–1745, 2001. View at Google Scholar · View at Scopus
  32. A. Ivanović, K. Sotiropoulos, T. D. Vukov et al., “Cranial shape variation and molecular phylogenetic structure of crested newts (Triturus cristatus superspecies: Caudata, Salamandridae) in the Balkans,” Biological Journal of the Linnean Society, vol. 95, no. 2, pp. 348–360, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Steinfartz, S. Vicario, J. W. Arntzen, and A. Caccone, “A Bayesian approach on molecules and behavior: reconsidering phylogenetic and evolutionary patterns of the Salamandridae with emphasis on Triturus newts,” Journal of Experimental Zoology Part B, vol. 308, no. 2, pp. 139–162, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Griffiths, Newts and Salamanders of Europe, T. Poyser and A. D Poyser, London, UK, 1996.
  35. T. R. Halliday, “The courtship of European newts. An evolutionary perspective,” in The Reproductive Biology of Amphibians, D. H. Taylor and S. I. Guttman, Eds., pp. 185–232, Plenum, New York, NY, USA, 1977. View at Google Scholar
  36. G. E. Themudo, B. Wielstra, and J. W. Arntzen, “Multiple nuclear and mitochondrial genes resolve the branching order of a rapid radiation of crested newts (Triturus, Salamandridae),” Molecular Phylogenetics and Evolution, vol. 52, no. 2, pp. 321–328, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. J. W. Arntzen and G. P. Wallis, “Geographic variation and taxonomy of crested newts (Triturus cristatus superspecies): morphological and mitochondrial DNA data,” Contribution to Zoology, vol. 68, no. 3, pp. 181–203, 1999. View at Google Scholar
  38. J. W. Arntzen and B. Wielstra, “Where to draw the line? A nuclear genetic perspective on proposed range boundaries of the crested newts Triturus karelinii and T. arntzeni,” Amphibia Reptilia, vol. 31, no. 3, pp. 311–322, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Gavrilets and A. Vose, “Dynamic patterns of adaptive radiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 50, pp. 18040–18045, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Schluter, The Ecology of Adaptive Radiation, Oxford University Press, Oxford, UK, 2000.
  41. S. Gavrilets and A. Vose, “Dynamic patterns of adaptive radiation: evolution of mating preferences,” in Speciation and Patterns of Diversity, R. K. Butlin, J. R. Bridle, and D. Schulter, Eds., pp. 102–126, Cambridge University Press, Cambridge, UK, 2009. View at Google Scholar
  42. T. D. Vukov, K. Sotiropoulos, B. Wielstra, G. Džukić, and M. L. Kalezić, “The evolution of adult body form in the crested newts (Triturus cristatus superspecies, Caudata, Salamandridae),” Journal of Zoological Systematics and Evolutionary Research, vol. 49, no. 4, pp. 324–334, 2011. View at Google Scholar
  43. J. Crnobrnja-Isailović, G. Džukić, N. Krstić, and M. L. Kalezić, “Evolutionary and paleogeographical effects on the distribution of the Triturus cristatus superspecies in the central Balkans,” Amphibia Reptilia, vol. 18, no. 4, pp. 321–332, 1997. View at Google Scholar · View at Scopus
  44. B. Lanza, J. W. Arntzen, and E. Gentile, “Vertebral numbers in the Caudata of the western Palaearctic (Amphibia),” Atti del Museo Civico di Storia Naturale—Trieste, vol. 54, pp. 3–114, 2010. View at Google Scholar
  45. R. E. Strauss and R. Altig, “Ontogenetic body form changes in three ecological morphotypes of anuran tadpoles,” Growth, Development and Aging, vol. 56, no. 1, pp. 3–16, 1992. View at Google Scholar · View at Scopus
  46. N. H. Shubin and P. Alberch, “A morphogenetic approach to the origin and basic organization of the tetrapod limb,” Evolutionary Biology, vol. 20, no. 1, pp. 319–387, 1986. View at Google Scholar
  47. L. H. Shubin, “Origin of evolutionary novelty: examples from limbs,” Journal of Morphology, vol. 252, no. 1, pp. 15–28, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. B. Hallgrímsson, K. Willmore, and B. K. Hall, “Canalization, developmental stability, and morphological integration in primate limbs,” Yearbook of Physical Anthropology, vol. 45, pp. 131–158, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. N. M. Young and B. Hallgrímsson, “Serial homology and the evolution of mammalian limb covariation structure,” Evolution, vol. 59, no. 12, pp. 2691–2704, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. R. R. Lawler, “Morphological integration and natural selection in the postcranium of wild Verreaux's sifaka (Propithecus verreauxi verreauxi),” American Journal of Physical Anthropology, vol. 136, no. 2, pp. 204–213, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. N. M. Young, G. P. Wagner, and B. Hallgrímsson, “Development and the evolvability of human limbs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 8, pp. 3400–3405, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Furtula, A. Ivanović, G. Džukić, and M. L. Kalezić, “Egg size variation in crested newts from the western Balkans (Caudata, Salamandridae, Triturus cristatus superspecies),” Zoological Studies, vol. 47, no. 5, pp. 585–590, 2008. View at Google Scholar
  53. M. Cvijanović, A. Ivanović, N. T. Kolarov, G. Džukić, and M. L. Kalezić, “Early ontogeny shows the same interspecific variation as natural history parameters in the crested newt (Triturus cristatus superspecies) (Caudata, Salamandridae),” Contributions to Zoology, vol. 78, no. 2, pp. 43–50, 2009. View at Google Scholar · View at Scopus
  54. R. H. Kaplan, “The implications of ovum size variability for offspring fitness and clutch size within several populations of salamanders (Ambystoma),” Evolution, vol. 34, no. 1, pp. 51–64, 1980. View at Google Scholar
  55. F. J. Rohlf and D. Slice, “Extensions of the procrustes method for the optimal superimposition of landmarks,” Systematic Zoology, vol. 39, no. 1, pp. 40–59, 1990. View at Google Scholar
  56. F. L. Bookstein, “Combining the tools of geometric morphometrics,” in Advances in Morphometrics, L. F. Marcus, M. Corti, A. Loy, G. J. P. Naylor, and D. E. Slice, Eds., ASI Series A: Life Sciences, Plenum Press, New York, NY, USA, 1996. View at Google Scholar
  57. I. L. Dryden and K. V. Mardia, Statistical Shape Analysis, John Wiley & Sons, New York, NY, USA, 1998.
  58. J. B. Yoder, E. Clancey, S. Des Roches et al., “Ecological opportunity and the origin of adaptive radiations,” Journal of Evolutionary Biology, vol. 23, no. 8, pp. 1581–1596, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Ivanović, K. Sotiropoulos, M. Furtula, G. Džukić, and M. L. Kalezić, “Sexual size and shape evolution in European newts (Amphibia: Caudata: Salamandridae) on the Balkan Peninsula,” Journal of Zoological Systematics and Evolutionary Research, vol. 46, no. 4, pp. 381–387, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Gavrilets, H. Li, and M. D. Vose, “Patterns of parapatric speciation,” Evolution, vol. 54, no. 4, pp. 1126–1134, 2000. View at Google Scholar · View at Scopus
  61. M. Ridley, Evolution, Blackwell Publishing, Malden, Mass, USA, 3rd edition, 2004.
  62. M. L. Kalezić, D. Cvetković, A. Djorović, and G. Džukić, “Paedomorphosis and differences in life-history traits of two neighbouring crested newt (Triturus carnifex) populations,” The Herpetological Journal, vol. 4, no. 4, pp. 151–159, 1994. View at Google Scholar
  63. J. B. Losos, K. I. Warheit, and T. W. Schoener, “Adaptive differentiation following experimental island colonization in Anolis lizards,” Nature, vol. 387, no. 6628, pp. 70–73, 1997. View at Google Scholar · View at Scopus
  64. D. J. Funk, P. Nosil, and W. J. Etges, “Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 9, pp. 3209–3213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. C. Venditti, A. Meade, and M. Pagel, “Phylogenies reveal new interpretation of speciation and the red queen,” Nature, vol. 463, no. 7279, pp. 349–352, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. M. W. Orr and T. B. Smith, “Ecology and speciation,” Trends in Ecology and Evolution, vol. 13, no. 12, pp. 502–506, 1998. View at Publisher · View at Google Scholar · View at Scopus
  67. S. V. Popov, F. Roegl, A. Y. Rozanov, F. F. Steininger, I. G. Scherba, and M. Kovač, Lithological-Paleogeographic Maps of Paratethys. 10 Maps Late Eocene to Pliocene, Courier Forschungsinstitut Senckenberg, Frankfurt am Main, Germany, 2004.
  68. S. N. Litvinchuk and L. J. Borkin, Evolution, Systematics, and Distribution of Crested Newts (Triturus cristatus Complex) in Russion and Adjacent Countries, Europeisky Dom, St. Petersburg, Russia, 2009.
  69. G.P. Wallis and J. W. Arntzen, “Mitochondrial-DNA variation in the crested newt superspecies: limited cytoplasmic gene flow among species,” Evolution, vol. 43, no. 1, pp. 88–101, 1989. View at Google Scholar
  70. J. Vörös and J. W. Arntzen, “Weak population structuring in the Danube crested newt, Triturus dobrogicus, inferred from allozymes,” Amphibia Reptilia, vol. 31, no. 3, pp. 339–346, 2010. View at Publisher · View at Google Scholar · View at Scopus