Table of Contents
International Journal of Evolutionary Biology
Volume 2012 (2012), Article ID 843167, 8 pages
http://dx.doi.org/10.1155/2012/843167
Research Article

Where Do Phosphosites Come from and Where Do They Go after Gene Duplication?

Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes, Université Laval, Pavillon Charles-Eugène-Marchand, 1030, Avenue de la Médecine, Québec, QC, Canada G1V 0A6

Received 21 March 2012; Accepted 3 May 2012

Academic Editor: Frédéric Brunet

Copyright © 2012 Guillaume Diss et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Ohno, Evolution by Gene Duplication, Allen & Unwin/Springer, London, UK, 1970.
  2. K. S. Dulai, M. von Dornum, J. D. Mollon, and D. M. Hunt, “The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates,” Genome Research, vol. 9, no. 7, pp. 629–638, 1999. View at Google Scholar · View at Scopus
  3. A. Efstratiadis, J. W. Posakony, T. Maniatis et al., “The structure and evolution of the human β-globin gene family,” Cell, vol. 21, no. 3, pp. 653–668, 1980. View at Google Scholar · View at Scopus
  4. J. Z. Zhang, “Evolution by gene duplication: an update,” Trends in Ecology & Evolution, vol. 18, no. 6, pp. 292–298, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Boulais, M. Trost, C. R. Landry et al., “Molecular characterization of the evolution of phagosomes,” Molecular Systems Biology, vol. 6, article 423, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Hurles, “Gene duplication: the genomic trade in spare parts,” PLoS Biology, vol. 2, no. 7, article E206, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Wagner, “Birth and death of duplicated genes in completely sequenced eukaryotes,” Trends in Genetics, vol. 17, no. 5, pp. 237–239, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Lynch and J. S. Conery, “The evolutionary fate and consequences of duplicate genes,” Science, vol. 290, no. 5494, pp. 1151–1155, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Lynch, W. Sung, K. Morris et al., “A genome-wide view of the spectrum of spontaneous mutations in yeast,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 27, pp. 9272–9277, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Force, M. Lynch, F. B. Pickett, A. Amores, Y. L. Yan, and J. Postlethwait, “Preservation of duplicate genes by complementary, degenerative mutations,” Genetics, vol. 151, no. 4, pp. 1531–1545, 1999. View at Google Scholar · View at Scopus
  11. A. van Hoof, “Conserved functions of yeast genes support the duplication, degeneration and complementation model for gene duplication,” Genetics, vol. 171, no. 4, pp. 1455–1461, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. A. M. Dean and J. W. Thornton, “Mechanistic approaches to the study of evolution: the functional synthesis,” Nature Reviews Genetics, vol. 8, no. 9, pp. 675–688, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Lynch and A. Force, “The probability of duplicate gene preservation by subfunctionalization,” Genetics, vol. 154, no. 1, pp. 459–473, 2000. View at Google Scholar · View at Scopus
  14. X. L. He and J. Z. Zhang, “Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution,” Genetics, vol. 169, no. 2, pp. 1157–1164, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. F. A. Kondrashov, I. B. Rogozin, Y. I. Wolf, and E. V. Koonin, “Selection in the evolution of gene duplications,” Genome Biology, vol. 3, no. 2, pp. 0008–0008.9, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. F. A. Kondrashov and E. V. Koonin, “A common framework for understanding the origin of genetic dominance and evolutionary fates of gene duplications,” Trends in Genetics, vol. 20, no. 7, pp. 287–290, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. S. D. Ferris and G. S. Whitt, “Evolution of the differential regulation of duplicate genes after polyploidization,” Journal of Molecular Evolution, vol. 12, no. 4, pp. 267–317, 1979. View at Google Scholar · View at Scopus
  18. Z. L. Gu, D. Nicolae, H. H. S. Lu, and W. H. Li, “Rapid divergence in expression between duplicate genes inferred from microarray data,” Trends in Genetics, vol. 18, no. 12, pp. 609–613, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Rodgers-Melnick, S. P. Mane, P. Dharmawardhana et al., “Contrasting patterns of evolution following whole genome versus tandem duplication events in Populus,” Genome Research, vol. 22, no. 1, pp. 95–105, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. A. M. Moses and C. R. Landry, “Moving from transcriptional to phospho-evolution: generalizing regulatory evolution?” Trends in Genetics, vol. 26, no. 11, pp. 462–467, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Mann and O. N. Jensen, “Proteomic analysis of post-translational modifications,” Nature Biotechnology, vol. 21, no. 3, pp. 255–261, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Seo and K. J. Lee, “Post-translational modifications and their biological functions: proteomic analysis and systematic approaches,” Journal of Biochemistry and Molecular Biology, vol. 37, no. 1, pp. 35–44, 2004. View at Google Scholar · View at Scopus
  23. T. Hunter, “Signaling—2000 and beyond,” Cell, vol. 100, no. 1, pp. 113–127, 2000. View at Google Scholar · View at Scopus
  24. Z. Serber and J. E. Ferrell, “Tuning bulk electrostatics to regulate protein function,” Cell, vol. 128, no. 3, pp. 441–444, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. M. K. Tarrant and P. A. Cole, “The chemical biology of protein phosphorylation,” Annual Review of Biochemistry, vol. 78, pp. 797–825, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. U. Basu, Y. B. Wang, and F. W. Alt, “Evolution of phosphorylation-dependent regulation of activation-induced cytidine deaminase,” Molecular Cell, vol. 32, no. 2, pp. 285–291, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S. M. Pearlman, Z. Serber, and J. E. Ferrell, “A mechanism for the evolution of phosphorylation sites,” Cell, vol. 147, no. 4, pp. 934–946, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Z. Kurmangaliyev, A. Goland, and M. S. Gelfand, “Evolutionary patterns of phosphorylated serines,” Biology Direct, vol. 6, article 8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Beltrao, J. C. Trinidad, D. Fiedler et al., “Evolution of phosphoregulation: comparison of phosphorylation patterns across yeast species,” PLoS Biology, vol. 7, no. 6, Article ID e1000134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Gnad, L. M. F. de Godoy, J. Cox et al., “High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast,” Proteomics, vol. 9, no. 20, pp. 4642–4652, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. C. P. Albuquerque, M. B. Smolka, S. H. Payne, V. Bafna, J. Eng, and H. L. Zhou, “A multidimensional chromatography technology for in-depth phosphoproteome analysis,” Molecular & Cellular Proteomics, vol. 7, no. 7, pp. 1389–1396, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. G. D. Amoutzias, Y. He, J. Gordon, D. Mossialos, S. G. Oliver, and Y. van de Peer, “Posttranslational regulation impacts the fate of duplicated genes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 7, pp. 2967–2971, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Freschi, M. Courcelles, P. Thibault, S. W. Michnick, and C. R. Landry, “Phosphorylation network rewiring by gene duplication,” Molecular Systems Biology, vol. 7, article 504, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Kaganovich and M. Snyder, “Phosphorylation of yeast transcription factors correlates with the evolution of novel sequence and function,” Journal of Proteome Research, vol. 11, no. 1, pp. 261–268, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Gruhler, J. V. Olsen, S. Mohammed et al., “Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway,” Molecular & Cellular Proteomics, vol. 4, no. 3, pp. 310–327, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Bodenmiller, L. N. Mueller, M. Mueller, B. Domon, and R. Aebersold, “Reproducible isolation of distinct, overlapping segments of the phosphoproteome,” Nature Methods, vol. 4, no. 3, pp. 231–237, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Chi, C. Huttenhower, L. Y. Geer et al., “Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 7, pp. 2193–2198, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. X. Li, S. A. Gerber, A. D. Rudner et al., “Large-scale phosphorylation analysis of α-factor-arrested Saccharomyces cerevisiae,” Journal of Proteome Research, vol. 6, no. 3, pp. 1190–1197, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Reinders, K. Wagner, R. P. Zahedit et al., “Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase,” Molecular & Cellular Proteomics, vol. 6, no. 11, pp. 1896–1906, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. R. C. Edgar, “MUSCLE: multiple sequence alignment with high accuracy and high throughput,” Nucleic Acids Research, vol. 32, no. 5, pp. 1792–1797, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. Z. H. Yang, “PAML 4: phylogenetic analysis by maximum likelihood,” Molecular Biology and Evolution, vol. 24, no. 8, pp. 1586–1591, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. C. R. Landry, E. D. Levy, and S. W. Michnick, “Weak functional constraints on phosphoproteomes,” Trends in Genetics, vol. 25, no. 5, pp. 193–197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. J. J. Ward, J. S. Sodhi, L. J. McGuffin, B. F. Buxton, and D. T. Jones, “Prediction and functional analysis of native disorder in proteins from the three kingdoms of life,” Journal of Molecular Biology, vol. 337, no. 3, pp. 635–645, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. The R Project for Statistical Computing, http://www.r-project.org.
  45. P. Cohen, “The regulation of protein function by multisite phosphorylation—a 25 year update,” Trends in Biochemical Sciences, vol. 25, no. 12, pp. 596–601, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. X. Gu, Z. Zhang, and W. Huang, “Rapid evolution of expression and regulatory divergences after yeast gene duplication,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 3, pp. 707–712, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. J. A. Ubersax and J. E. Ferrell Jr., “Mechanisms of specificity in protein phosphorylation,” Nature Reviews, vol. 8, no. 7, pp. 530–541, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Gordon, “Evolution escapes rugged fitness landscapes by gene or genome doubling: the blessing of higher dimensionality,” Computers & Chemistry, vol. 18, no. 3, pp. 325–331, 1994. View at Google Scholar · View at Scopus
  49. T. F. Hansen, A. J. R. Carter, and C. H. Chiu, “Gene conversion may aid adaptive peak shifts,” Journal of Theoretical Biology, vol. 207, no. 4, pp. 495–511, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. D. R. Scannell and K. H. Wolfe, “A burst of protein sequence evolution and a prolonged period of asymmetric evolution follow gene duplication in yeast,” Genome Research, vol. 18, no. 1, pp. 137–147, 2008. View at Publisher · View at Google Scholar · View at Scopus