Table of Contents
International Journal of Evolutionary Biology
Volume 2012, Article ID 846421, 10 pages
http://dx.doi.org/10.1155/2012/846421
Review Article

Mechanisms of Gene Duplication and Translocation and Progress towards Understanding Their Relative Contributions to Animal Genome Evolution

The Scottish Oceans Institute, School of Biology, University of St Andrews, East Sands, Fife KY16 8LB, UK

Received 26 March 2012; Revised 30 May 2012; Accepted 27 June 2012

Academic Editor: Ben-Yang Liao

Copyright © 2012 Olivia Mendivil Ramos and David E. K. Ferrier. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Wang, H. Zheng, S. Yang et al., “Origin and evolution of new exons in rodents,” Genome Research, vol. 15, no. 9, pp. 1258–1264, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. Q. Zhou, G. Zhang, Y. Zhang et al., “On the origin of new genes in Drosophila,” Genome Research, vol. 18, no. 9, pp. 1446–1455, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Khalturin, G. Hemmrich, S. Fraune, R. Augustin, and T. C. G. Bosch, “More than just orphans: are taxonomically-restricted genes important in evolution?” Trends in Genetics, vol. 25, no. 9, pp. 404–413, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. A. C. Sharman, “Some new terms for duplicated genes,” Seminars in Cell and Developmental Biology, vol. 10, no. 5, pp. 561–563, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. E. L. L. Sonnhammer and E. V. Koonin, “Orthology, paralogy and proposed classification for paralog subtypes,” Trends in Genetics, vol. 18, no. 12, pp. 619–620, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. E. V. Koonin, “Orthologs, paralogs, and evolutionary genomics,” Annual Review of Genetics, vol. 39, pp. 309–338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Durkin, W. Coppieters, C. Drögüller et al., “Serial translocation by means of circular intermediates underlies colour sidedness in cattle,” Nature, vol. 482, no. 7383, pp. 81–84, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Waterston and J. Sulston, “The genome of Caenorhabditis elegans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 24, pp. 10836–10840, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. W. M. Fitch, “Distinguishing homologous from analogous proteins,” Systematic Zoology, vol. 19, no. 2, pp. 99–113, 1970. View at Google Scholar · View at Scopus
  10. K. Wolfe, “Robustness—it's not where you think it is,” Nature Genetics, vol. 25, no. 1, pp. 3–4, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Ezawa, K. Ikeo, T. Gojobori, and N. Saitou, “Evolutionary patterns of recently emerged animal duplogs,” Genome Biology and Evolution, vol. 3, no. 1, pp. 1119–1135, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. C. N. Dewey, “Positional orthology: putting genomic evolutionary relationships into context,” Briefings in Bioinformatics, vol. 12, no. 5, Article ID bbr040, pp. 401–412, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Nakatani, H. Takeda, Y. Kohara, and S. Morishita, “Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates,” Genome Research, vol. 17, no. 9, pp. 1254–1265, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. R. F. Furlong and P. W. H. Holland, “Were vertebrates octoploid?” Philosophical Transactions of the Royal Society B, vol. 357, no. 1420, pp. 531–544, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Makino and A. McLysaght, “Ohnologs in the human genome are dosage balanced and frequently associated with disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 20, pp. 9270–9274, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. R. F. Furlong and P. W. H. Holland, “Polyploidy in vertebrate ancestry: ohno and beyond,” Biological Journal of the Linnean Society, vol. 82, no. 4, pp. 425–430, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Garcia-Fernandez and P. W. H. Holland, “Archetypal organization of the amphioxus Hox gene cluster,” Nature, vol. 370, no. 6490, pp. 563–566, 1994. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Z. Holland, R. Albalat, K. Azumi et al., “The amphioxus genome illuminates vertebrate origins and cephalochordate biology,” Genome Research, vol. 18, no. 7, pp. 1100–1111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. A. L. Hughes, “Phylogenies of developmentally important proteins do not support the hypothesis of two rounds of genome duplication early in vertebrate history,” Journal of Molecular Evolution, vol. 48, no. 5, pp. 565–576, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. G. C. Conant and A. Wagner, “Asymmetric sequence divergence of duplicate genes,” Genome Research, vol. 13, no. 9, pp. 2052–2058, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. V. J. Lynch and G. P. Wagner, “Multiple chromosomal rearrangements structured the ancestral vertebrate Hox-bearing protochromosomes,” PLoS Genetics, vol. 5, no. 1, Article ID e1000349, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. P. W. Holland, J. Garcia-Fernàndez, N. A. Williams, and A. Sidow, “Gene duplications and the origins of vertebrate development,” Development, pp. 125–133, 1994. View at Google Scholar · View at Scopus
  23. N. H. Putnam, T. Butts, D. E. K. Ferrier et al., “The amphioxus genome and the evolution of the chordate karyotype,” Nature, vol. 453, no. 7198, pp. 1064–1071, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. A. Abbasi, “Unraveling ancient segmental duplication events in human genome by phylogenetic analysis of multigene families residing on HOX-cluster paralogons,” Molecular Phylogenetics and Evolution, vol. 57, no. 2, pp. 836–848, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. N. D. Schaeper, N. M. Prpic, and E. A. Wimmer, “A clustered set of three Sp-family genes is ancestral in the Metazoa: evidence from sequence analysis, protein domain structure, developmental expression patterns and chromosomal location,” BMC Evolutionary Biology, vol. 10, no. 1, article 88, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. L. Hughes and R. Friedman, “Differential loss of ancestral gene families as a source of genomic divergence in animals,” Proceedings of the Royal Society B, vol. 271, supplement 3, pp. S107–S109, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. E. G. J. Danchin, P. Gouret, and P. Pontarotti, “Eleven ancestral gene families lost in mammals and vertebrates while otherwise universally conserved in animals,” BMC Evolutionary Biology, vol. 6, article 5, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. D. J. Miller, G. Hemmrich, E. E. Ball et al., “The innate immune repertoire in Cnidaria—ancestral complexity and stochastic gene loss,” Genome Biology, vol. 8, no. 4, article R59, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Wyder, E. V. Kriventseva, R. Schröder, T. Kadowaki, and E. M. Zdobnov, “Quantification of ortholog losses in insects and vertebrates,” Genome Biology, vol. 8, no. 11, article R242, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Takahashi, C. McDougall, J. Troscianko et al., “An EST screen from the annelid Pomatoceros lamarckii reveals patterns of gene loss and gain in animals,” BMC Evolutionary Biology, vol. 9, no. 1, article 240, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. S. C. Le Comber and C. Smith, “Polyploidy in fishes: patterns and processes,” Biological Journal of the Linnean Society, vol. 82, no. 4, pp. 431–442, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. B. K. Mable, ““Why polyploidy is rarer in animals than in plants”: myths and mechanisms,” Biological Journal of the Linnean Society, vol. 82, no. 4, pp. 453–466, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. O. Jatllon, J. M. Aury, F. Brunet et al., “Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype,” Nature, vol. 431, no. 7011, pp. 946–957, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. R. D. Morin, E. Chang, A. Petrescu et al., “Sequencing and analysis of 10,967 full-length cDNA clones from Xenopus laevis and Xenopus tropicalis reveals post-tetraploidization transcriptome remodeling,” Genome Research, vol. 16, no. 6, pp. 796–803, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. M. H. Gallardo, J. W. Bickham, R. L. Honeycutt, R. A. Ojeda, and N. Köhler, “Discovery of tetraploidy in a mammal,” Nature, vol. 401, no. 6751, p. 341, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Vergilino, C. Belzile, and F. Dufresne, “Genome size evolution and polyploidy in the Daphnia pulex complex (Cladocera: Daphniidae),” Biological Journal of the Linnean Society, vol. 97, no. 1, pp. 68–79, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. T. G. D'Souza, M. Storhas, H. Schulenburg, L. W. Beukeboom, and N. K. Michiels, “Occasional sex in an 'asexual' polyploid hermaphrodite,” Proceedings of the Royal Society B, vol. 271, no. 1543, pp. 1001–1007, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Fontana, L. Congiu, V. A. Mudrak et al., “Evidence of hexaploid karyotype in shortnose sturgeon,” Genome, vol. 51, no. 2, pp. 113–119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. R. J. Schultz, “Role of polyploidy in the evolution of fishes,” in Polyploidy: Biological Relevance, W. H. Lewis, Ed., pp. 341–378, Plenum Press, New York, NY, USA, 1980. View at Google Scholar
  40. A. A. Echelle and D. T. Mosier, “All-female fish: a cryptic species of Menidia (Atherinidae),” Science, vol. 212, no. 4501, pp. 1411–1413, 1981. View at Google Scholar · View at Scopus
  41. M. Collares-Pereira, J. Madeira, and P. Rab, “Spontaneous triploidy in the stone loach Noemacheilus barbatulus (Balitoridae),” Copeia, vol. 2, pp. 483–484, 1995. View at Google Scholar
  42. X. Yu, T. Zhou, K. Li, Y. Li, and M. Zhou, “On the karyosystematics of cyprinid fishes and a summary of fish chromosome studies in China,” Genetica, vol. 72, no. 3, pp. 225–235, 1987. View at Publisher · View at Google Scholar · View at Scopus
  43. K. K. Rishi, Shashikala, and S. Rishi, “Karyotype study on six Indian hill-stream fishes,” Chromosome Science, vol. 2, pp. 9–13, 1998. View at Google Scholar
  44. R. C. Vrijenhoek, R. M. Dawley, C. J. Cole, and J. P. Bogart, “A list of known unisexual vertebrates,” in Evolution and Cytology of Unisexual Vertebrates, R. Dawley and J. Bogart, Eds., pp. 19–23, The State University of New York, New York, NY, USA, 1989. View at Google Scholar
  45. K. Janko, J. Bohlen, D. Lamatsch et al., “The gynogenetic reproduction of diploid and triploid hybrid spined loaches (Cobitis: Teleostei), and their ability to establish successful clonal lineages—on the evolution of polyploidy in asexual vertebrates,” Genetica, vol. 131, no. 2, pp. 185–194, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. K. Arai, K. Matsubara, and R. Suzuki, “Production of polyploids and viable gynogens using spontaneously occurring tetraploid loach, Misgurnus anguillicaudatus,” Aquaculture, vol. 117, no. 3-4, pp. 227–235, 1993. View at Google Scholar · View at Scopus
  47. P. Raicu and E. Taisescu, “Misgurnus fossilis, a tetraploid fish species,” Journal of Heredity, vol. 63, pp. 92–94, 1972. View at Google Scholar
  48. A. Chenuil, N. Galtier, and P. Berrebi, “A test of the hypothesis of an autopolyploid vs. allopolyploid origin for a tetraploid lineage: application to the genus Barbus (Cyprinidae),” Heredity, vol. 82, no. 4, pp. 373–380, 1999. View at Google Scholar · View at Scopus
  49. A. Suzuki and Y. Taki, “Karyotype of tetraploid origin in a tropical Asian cyprinid, Acrossocheilus sumatranus,” Japanese Journal of Ichthyology, vol. 28, pp. 173–176, 1981. View at Google Scholar
  50. E. Y. Mazik, A. T. Toktosunov, and P. Ráb, “Karyotype study of four species of the genus Diptychus (Pisces, Cyprinidae) with remarks on polyploidy of Scizothoracine fishes,” Folia Zoologica, vol. 38, pp. 325–332, 1989. View at Google Scholar
  51. J.-T. Wang, J.-T. Li, X.-F. Zhang, and X.-W. Sun, “Transcriptome analysis reveals the time of the fourth round of genome duplication in common carp (Cyprinus carpio),” BMC Genomics, vol. 13, no. 1, article 96, 2012. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Shimuzu, T. Oshiro, and M. Sakaizumi, “Electrophoretic studies of diploid, triploid and tetraploid forms of the Japanese silver crucian carp, Carassius auratus langsdorfi,” Japanese Journal of Ichthyology, vol. 40, pp. 65–75, 1993. View at Google Scholar
  53. J. Gui, Y. Li, K. Li, Y. Hong, and T. Zhou, “Studies on the karyotypes of Chinese cyprinid fishes: karyotypes of three tetraploid species in Barbinae and one tetraploid species in Cyprininae,” Acta Genetica Sinica, vol. 12, pp. 202–208, 1985. View at Google Scholar
  54. A. Vervoort, “Tetraploidy in Protopterus (Dipnoi),” Experientia, vol. 36, no. 3, pp. 294–296, 1980. View at Google Scholar · View at Scopus
  55. R. R. Ewing, C. G. Scalet, and D. P. Evenson, “Flow cytometric identification of larval triploid walleyes,” Progressive Fish Culturist, vol. 53, pp. 177–180, 1991. View at Google Scholar
  56. F. W. Allendorf and G. H. Thorgaard, “Tetraploidy and the evolution of Salmonid fishes,” in Evolutionary Genetics of Fishes, B. J. Turner, Ed., pp. 1–53, Plenum Press, New York, NY, USA, 1984. View at Google Scholar
  57. N. Pandey and W. S. Lakra, “Evidence of female heterogamety, B-chromosome and natural tetraploidy in the Asian catfish, Clarias batrachus, used in aquaculture,” Aquaculture, vol. 149, no. 1-2, pp. 31–37, 1997. View at Publisher · View at Google Scholar · View at Scopus
  58. T. J. Pandian and R. Koteeswaran, “Natural occurrence of monoploids and polyploids in the Indian catfish, Heteropneustes fossilis,” Current Science, vol. 76, no. 8, pp. 1134–1137, 1999. View at Google Scholar · View at Scopus
  59. M. B. Ptacek, H. C. Gerhardt, and R. D. Sage, “Speciation by polyploidy in treefrogs: multiple origins of the tetraploid, Hyla versicolor,” Evolution, vol. 48, no. 3, pp. 898–908, 1994. View at Google Scholar · View at Scopus
  60. B. K. Mable and J. P. Bogart, “Hybridization between tetraploid and diploid species of treefrogs (genus Hyla),” Journal of Heredity, vol. 86, no. 6, pp. 432–440, 1995. View at Google Scholar · View at Scopus
  61. B. K. Mable and J. D. Roberts, “Mitochondrial DNA evolution of tetraploids in the genus Neobatrachus (Anura: Myobatrachidae),” Copeia, no. 4, pp. 680–689, 1997. View at Google Scholar · View at Scopus
  62. J. A. Bailey and E. E. Eichler, “Primate segmental duplications: crucibles of evolution, diversity and disease,” Nature Reviews Genetics, vol. 7, no. 7, pp. 552–564, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. X. She, Z. Cheng, S. Zöllner, D. M. Church, and E. E. Eichler, “Mouse segmental duplication and copy number variation,” Nature Genetics, vol. 40, no. 7, pp. 909–914, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. G. E. Liu, M. Ventura, A. Cellamare et al., “Analysis of recent segmental duplications in the bovine genome,” BMC Genomics, vol. 10, article 571, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. E. Tuzun, J. A. Bailey, and E. E. Eichler, “Recent segmental duplications in the working draft assembly of the brown Norway rat,” Genome Research, vol. 14, no. 4, pp. 493–506, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. I. C. G. S. Consortium, “Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution,” Nature, vol. 432, no. 7018, pp. 695–777, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. T. J. Nicholas, Z. Cheng, M. Ventura, K. Mealey, E. E. Eichler, and J. M. Akey, “The genomic architecture of segmental duplications and associated copy number variants in dogs,” Genome Research, vol. 19, no. 3, pp. 491–499, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. J. A. Bailey, G. Liu, and E. E. Eichler, “An Alu transposition model for the origin and expansion of human segmental duplications,” American Journal of Human Genetics, vol. 73, no. 4, pp. 823–834, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. A. S. Fiston-Lavier, D. Anxolabehere, and H. Quesneville, “A model of segmental duplication formation in Drosophila melanogaster,” Genome Research, vol. 17, no. 10, pp. 1458–1470, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. J. M. Ranz, F. Casals, and A. Ruiz, “How malleable is the eukaryotic genome? Extreme rate of chromosomal rearrangement in the genus Drosophila,” Genome Research, vol. 11, no. 2, pp. 230–239, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. J. M. Szamalek, D. N. Cooper, W. Schempp et al., “Polymorphic micro-inversions contribute to the genomic variability of humans and chimpanzees,” Human Genetics, vol. 119, no. 1-2, pp. 103–112, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. R. P. Meisel, “Repeat mediated gene duplication in the Drosophila pseudoobscura genome,” Gene, vol. 438, no. 1-2, pp. 1–7, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. L. Zhang, H. H. S. Lu, W.-Y. Chung, J. Yang, and W.-H. Li, “Patterns of segmental duplication in the human genome,” Molecular Biology and Evolution, vol. 22, no. 1, pp. 135–141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. V. Katju and M. Lynch, “The Structure and early evolution of recently Arisen gene duplicates in the Caenorhabditis elegans genome,” Genetics, vol. 165, no. 4, pp. 1793–1803, 2003. View at Google Scholar · View at Scopus
  75. R. A. Veitia, S. Bottani, and J. A. Birchler, “Cellular reactions to gene dosage imbalance: genomic, transcriptomic and proteomic effects,” Trends in Genetics, vol. 24, no. 8, pp. 390–397, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. D. Pan and L. Zhang, “Quantifying the major mechanisms of recent gene duplications in the human and mouse genomes: a novel strategy to estimate gene duplication rates,” Genome Biology, vol. 8, no. 8, article R158, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Bhutkar, S. M. Russo, T. F. Smith, and W. M. Gelbart, “Genome-scale analysis of positionally relocated genes,” Genome Research, vol. 17, no. 12, pp. 1880–1887, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. D. V. Babushok and H. H. Kazazian, “Progress in understanding the biology of the human mutagen LINE-1,” Human Mutation, vol. 28, no. 6, pp. 527–539, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. M. D. Lorenzen, A. Gnirke, J. Margolis et al., “The maternal-effect, selfish genetic element Medea is associated with a composite Tc1 transposon,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 29, pp. 10085–10089, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. C. M. B. Carvalho, M. B. Ramocki, D. Pehlivan et al., “Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome,” Nature Genetics, vol. 43, no. 11, pp. 1074–1081, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Oliver-Bonet, J. Navarro, M. Carrera, J. Egozcue, and J. Benet, “Aneuploid and unbalanced sperm in two translocation carriers: evaluation of the genetic risk,” Molecular Human Reproduction, vol. 8, no. 10, pp. 958–963, 2002. View at Google Scholar · View at Scopus
  82. C. M. Ogilvie and P. N. Scriven, “Meiotic outcomes in reciprocal translocation carriers ascertained in 3-day human embryos,” European Journal of Human Genetics, vol. 10, no. 12, pp. 801–806, 2002. View at Publisher · View at Google Scholar · View at Scopus
  83. E. M. Chang, J. E. Han, I. P. Kwak, W. S. Lee, T. K. Yoon, and S. H. Shim, “Preimplantation genetic diagnosis for couples with a Robertsonian translocation: practical information for genetic counseling,” Journal of Assisted Reproduction and Genetics, vol. 29, no. 1, pp. 67–75, 2012. View at Publisher · View at Google Scholar · View at Scopus
  84. E. Anton, J. Blanco, J. Egozcue, and F. Vidal, “Sperm FISH studies in seven male carriers of Robertsonian translocation t(13;14)(q10;q10),” Human Reproduction, vol. 19, no. 6, pp. 1345–1351, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. L. De Lorenzi, P. Morando, J. Planas, M. Zannotti, L. Molteni, and P. Parma, “Reciprocal translocations in cattle: frequency estimation,” Journal of Animal Breeding and Genetics. In press. View at Publisher · View at Google Scholar · View at Scopus
  86. Z. Ou, P. Stankiewicz, Z. Xia et al., “Observation and prediction of recurrent human translocations mediated by NAHR between nonhomologous chromosomes,” Genome Research, vol. 21, no. 1, pp. 33–46, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. K. E. Hermetz, U. Surti, J. D. Cody, and M. K. Rudd, “A recurrent translocation is mediated by homologous recombination between HERV-H elements,” Molecular Cytogenetics, vol. 5, no. 1, article 6, 2012. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Lynch and J. S. Conery, “The evolutionary fate and consequences of duplicate genes,” Science, vol. 290, no. 5494, pp. 1151–1155, 2000. View at Publisher · View at Google Scholar · View at Scopus
  89. K. Ezawa, S. OOta, and N. Saitou, “Genome-wide search of gene conversions in duplicated genes of mouse and rat,” Molecular Biology and Evolution, vol. 23, no. 5, pp. 927–940, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. N. Osada and H. Innan, “Duplication and gene conversion in the Drosophila melanogaster genome,” PLoS Genetics, vol. 4, no. 12, Article ID e1000305, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. K. Fujimura, M. A. Conte, and T. D. Kocher, “Circular DNA intermediate in the duplication of nile tilapia vasa genes,” PLoS ONE, vol. 6, no. 12, Article ID e29477, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. N. H. Putnam, M. Srivastava, U. Hellsten et al., “Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization,” Science, vol. 317, no. 5834, pp. 86–94, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Srivastava, E. Begovic, J. Chapman et al., “The Trichoplax genome and the nature of placozoans,” Nature, vol. 454, no. 7207, pp. 955–960, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. H. C. Seo, R. B. Edvardsen, A. D. Maeland et al., “Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica,” Nature, vol. 430, no. 7004, pp. 67–71, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. M. D. Adams, S. E. Celniker, R. A. Holt et al., “The genome sequence of Drosophila melanogaster,” Science, vol. 287, no. 5461, pp. 2185–2195, 2000. View at Publisher · View at Google Scholar · View at Scopus
  96. P. J. Stephens, C. D. Greenman, B. Fu et al., “Massive genomic rearrangement acquired in a single catastrophic event during cancer development,” Cell, vol. 144, no. 1, pp. 27–40, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. A. R. Quinlan and I. M. Hall, “Characterizing complex structural variation in germline and somatic genomes,” Trends in Genetics, vol. 28, no. 1, pp. 43–53, 2012. View at Publisher · View at Google Scholar · View at Scopus