Table of Contents
International Journal of Evolutionary Biology
Volume 2013 (2013), Article ID 545392, 7 pages
http://dx.doi.org/10.1155/2013/545392
Research Article

Sex-Biased Networks and Nodes of Sexually Antagonistic Conflict in Drosophila

Department of Biology, Temple University, 1900 N 12th Street, Philadelphia, PA 19122, USA

Received 12 July 2012; Revised 7 October 2012; Accepted 9 November 2012

Academic Editor: Alberto Civetta

Copyright © 2013 Matthew E. B. Hansen and Rob J. Kulathinal. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Darwin, The Descent of Man, and Selection in Relation to Sex, John Murray, London, UK, 1st edition, 1871.
  2. R. Singh, J. Xu, and R. Kulathinal, Rapidly Evolving Genes and Genetic Systems, Oxford University Press, Oxford, UK, 1st edition, 2012.
  3. J. Andrews, G. G. Bouffard, C. Cheadle, J. Lü, K. G. Becker, and B. Oliver, “Gene discovery using computational and microarray analysis of transcription in the Drosophila melanogaster testis,” Genome Research, vol. 10, no. 12, pp. 2030–2043, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. J. M. Ranz, C. I. Castillo-Davis, C. D. Meiklejohn, and D. L. Hartl, “Sex-dependent gene expression and evolution of the Drosophila transcriptome,” Science, vol. 300, no. 5626, pp. 1742–1745, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Parisi, R. Nuttall, D. Naiman et al., “Paucity of genes on the Drosophila X chromosome showing male-biased expression,” Science, vol. 299, no. 5607, pp. 697–700, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. R. S. Singh and R. J. Kulathinal, “Male sex drive and the masculinization of the genome,” BioEssays, vol. 27, no. 5, pp. 518–525, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Ellegren and J. Parsch, “The evolution of sex-biased genes and sex-biased gene expression,” Nature Reviews Genetics, vol. 8, no. 9, pp. 689–698, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Gavrilets, “Rapid evolution of reproductive barriers driven by sexual conflict,” Nature, vol. 403, no. 6772, pp. 886–889, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. G. A. Parker, “Sexual conflict and speciation,” Philosophical Transactions of the Royal Society B, vol. 353, no. 1366, pp. 261–274, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Arnqvist and L. Rowe, Sexual Conict, vol. 15 of Monographs in Behavior and Ecology, Princeton University Press, 2005.
  11. O. Y. Martin and D. J. Hosken, “Reproductive consequences of population divergence through sexual conflict,” Current Biology, vol. 14, no. 10, pp. 906–910, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Murali, S. Pacifico, J. Yu, S. Guest, G. G. Roberts, and R. L. Finley, “DroID 2011: a comprehensive, integrated resource for protein, transcription factor, RNA and gene interactions for Drosophila,” Nucleic Acids Research, vol. 39, no. 1, pp. D736–D743, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. N. L. Washington, E. O. Stinson, M. D. Perry et al., “The modENCODE data coordination center: lessons in harvesting comprehensive experimental details,” Database, vol. 2011, Article ID bar023, 2011. View at Publisher · View at Google Scholar
  14. S. Roy, J. Ernst, P. V. Kharchenko et al., “Identification of functional elements and regulatory circuits by Drosophila modENCODE,” Science, vol. 330, no. 6012, pp. 1787–1797, 2010. View at Publisher · View at Google Scholar
  15. S. G. Landt, G. K. Marinov, A. Kundaje et al., “ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia,” Genome Research, vol. 22, no. 9, pp. 1813–1831, 2012. View at Publisher · View at Google Scholar
  16. S. E. Celniker, L. A. L. Dillon, M. B. Gerstein et al., “Unlocking the secrets of the genome,” Nature, vol. 459, no. 7249, pp. 927–930, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Gnad and J. Parsch, “Sebida: a database for the functional and evolutionary analysis of genes with sex-biased expression,” Bioinformatics, vol. 22, no. 20, pp. 2577–2579, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. H. Malone, D.-Y. Cho, N. R. Mattiuzzo et al., “Mediation of Drosophila autosomal dosage effects and compensation by network interactions,” Genome Biology, vol. 13, no. 4, article r28, 2012. View at Publisher · View at Google Scholar
  19. M. Long, E. Betrán, and W. Wang, “The origin of new genes: glimpses from the young and old,” Nature Reviews Genetics, vol. 4, no. 11, pp. 865–875, 2003. View at Publisher · View at Google Scholar
  20. Y. E. Zhang, M. D. Vibranovski, B. H. Krinsky, and M. Long, “Age-dependent chromosomal distribution of male-biased genes in Drosophila,” Genome Research, vol. 20, no. 11, pp. 1526–1533, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Graveley, A. N. Brooks, J. W. Carlson et al., “The developmental transcriptome of Drosophil melanogaster,” Nature, vol. 471, pp. 473–479, 2010. View at Google Scholar
  22. S. Jagadeeshan and R. S. Singh, “Rapidly evolving genes of Drosophila: differing levels of selective pressure in testis, ovary, and head tissues between sibling species,” Molecular Biology and Evolution, vol. 22, no. 9, pp. 1793–1801, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. T. F. C. Mackay, “The genetic architecture of quantitative traits: lessons from Drosophila,” Current Opinion in Genetics and Development, vol. 14, no. 3, pp. 253–257, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Mensch, N. Lavagnino, V. P. Carreira, A. Massaldi, E. Hasson, and J. J. Fanara, “Identifying candidate genes affecting developmental time in Drosophila melanogaster: pervasive pleiotropy and gene-by-environment interaction,” BMC Developmental Biology, vol. 8, article 78, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Innocenti and E. H. Morrow, “The sexually antagonistic genes of Drosophila melanogaster,” PLoS Biology, vol. 8, no. 3, Article ID e1000335, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. R. J. Kulathinal and R. S. Singh, “The molecular basis of speciation: from patterns to processes, rules to mechanisms,” Journal of Genetics, vol. 87, no. 4, pp. 327–338, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Civetta and R. Singh, “Rapid evolution of sex-related genes: sexual conflict or sex-specific adaptations?” in Selective Sweeps, Landes Bioscience, 2000. View at Google Scholar
  28. A. Civetta and R. S. Singh, “High divergence of reproductive tract proteins and their association with postzygotic reproductive isolation in Drosophila melanogaster and Drosophila virilis group species,” Journal of Molecular Evolution, vol. 41, no. 6, pp. 1085–1095, 1995. View at Google Scholar · View at Scopus
  29. C. J. Grassa and R. J. Kulathinal, “Elevated evolutionary rates among functionally diverged reproductive genes across deep vertebrate lineages,” International Journal of Evolutionary Biology, vol. 2011, Article ID 274975, 9 pages, 2011. View at Publisher · View at Google Scholar
  30. E. Mayr, “Where are we?” Cold Spring Harbor Symposia on Quantitative Biology, vol. 24, pp. 1–14, 1959. View at Google Scholar