Table of Contents
International Journal of Evolutionary Biology
Volume 2013 (2013), Article ID 714304, 9 pages
Research Article

No Experimental Evidence for Sneaking in a West African Cichlid Fish with Extremely Long Sperm

Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany

Received 10 July 2013; Accepted 10 October 2013

Academic Editor: Kristina M. Sefc

Copyright © 2013 Kathrin Langen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Alternative reproductive tactics are widespread in fishes, increasing the potential for sperm competition. Sperm competition has enormous impact on both variation in sperm numbers and sperm size. In cichlids, the sperm competition risk is very divergent and longer sperm are usually interpreted as adaptation to sperm competition. Here we examined whether sneaking tactics exist in Pelvicachromis taeniatus, a socially monogamous cichlid with biparental brood care from West Africa. The small testis indicates low gonadal investment which is typical for genetically monogamous species. In contrast, sperm length with up to 85 μm is extraordinarily long. We examined the reproductive behaviour of ten groups with a male-biased sex ratio under semi-natural conditions via continuous video recording. We recorded spawning site preferences and correlates of reproductive success and conducted paternity tests using microsatellites. Safe breeding sites that could be successfully defended were preferred. All offspring could be assigned to their parents and no multiple paternities were detected. Body size of spawning pairs predicted their spawning probability and offspring hatching rate suggesting benefits from mating with large individuals. Our study suggests low risk of sperm competition under the given conditions in P. taeniatus and thus first evidence for genetic monogamy in a substrate breeding cichlid.