Table of Contents
International Journal of Evolutionary Biology
Volume 2013, Article ID 714304, 9 pages
http://dx.doi.org/10.1155/2013/714304
Research Article

No Experimental Evidence for Sneaking in a West African Cichlid Fish with Extremely Long Sperm

Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany

Received 10 July 2013; Accepted 10 October 2013

Academic Editor: Kristina M. Sefc

Copyright © 2013 Kathrin Langen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. R. Gross, “Alternative reproductive strategies and tactics: diversity within sexes,” Trends in Ecology and Evolution, vol. 11, no. 2, pp. 92–98, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. R. F. Oliveira, M. Taborsky, and H. J. Brockmann, Alternative Reproductive Tactics: An Integrative Approach, Cambridge University Press, Cambridge, Mass, USA, 2008.
  3. M. Taborsky, “Sneakers, satellites, and helpers: parasitic and cooperative behavior in fish reproduction,” Advances in the Study of Behavior, vol. 23, pp. 1–100, 1994. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Taborsky, “Alternative reproductive tactics in fish,” in Alternative Reproductive Tactics, R. F. Oliveira, M. Taborsky, and H. J. Brockmann, Eds., pp. 251–299, Cambridge University Press, Cambridge, Mass, USA, 2008. View at Google Scholar
  5. J. E. Mank and J. C. Avise, “Comparative phylogenetic analysis of male alternative reproductive tactics in ray-finned fishes,” Evolution, vol. 60, no. 6, pp. 1311–1316, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. G. A. Parker, “Sperm competition and its evolutionary consequences in the insects,” Biological Reviews, vol. 45, no. 4, pp. 525–567, 1970. View at Google Scholar
  7. G. A. Parker, “Sperm competition and the evolution of ejaculates: towards a theory base,” in Sperm Competition and Sexual Selection, T. R. Birkhead and A. P. Møller, Eds., pp. 3–54, Academic Press, London, UK, 1998. View at Google Scholar
  8. C. W. LaMunyon and S. Ward, “Evolution of sperm size in nematodes: sperm competition favours larger sperm,” Proceedings of the Royal Society B, vol. 266, no. 1416, pp. 263–267, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. M. J. G. Gage and E. H. Morrow, “Experimental evidence for the evolution of numerous, tiny sperm via sperm competition,” Current Biology, vol. 13, no. 9, pp. 754–757, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. M. J. G. Gage, C. P. Macfarlane, S. Yeates, R. G. Ward, J. B. Searle, and G. A. Parker, “Spermatozoal traits and sperm competition in Atlantic salmon: relative sperm velocity is the primary determinant of fertilization success,” Current Biology, vol. 14, no. 1, pp. 44–47, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. R. R. Snook, “Sperm in competition: not playing by the numbers,” Trends in Ecology and Evolution, vol. 20, no. 1, pp. 46–53, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. V. de Vlaming, G. Grossman, and F. Chapman, “On the use of the gonosomatic index,” Comparative Biochemistry and Physiology A, vol. 73, no. 1, pp. 31–39, 1982. View at Google Scholar · View at Scopus
  13. A. P. Møller and J. V. Briskie, “Extra-pair paternity, sperm competition and the evolution of testis size in birds,” Behavioral Ecology and Sociobiology, vol. 36, no. 5, pp. 357–365, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. A. H. Harcourt, P. H. Harvey, S. G. Larson, and R. V. Short, “Testis weight, body weight and breeding system in primates,” Nature, vol. 293, no. 5827, pp. 55–57, 1981. View at Google Scholar · View at Scopus
  15. M. J. G. Gage, “Associations between body size, mating pattern, testis size and sperm lengths across butterflies,” Proceedings of the Royal Society B, vol. 258, no. 1353, pp. 247–254, 1994. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Stockley, M. J. G. Gage, G. A. Parker, and A. P. Møller, “Sperm competition in fishes: the evolution of testis size and ejaculate characteristics,” American Naturalist, vol. 149, no. 5, pp. 933–954, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Balshine, B. J. Leach, F. Neat, N. Y. Werner, and R. Montgomerie, “Sperm size of African cichlids in relation to sperm competition,” Behavioral Ecology, vol. 12, no. 6, pp. 726–731, 2001. View at Google Scholar · View at Scopus
  18. S. Awata, T. Takeyama, Y. Makino, Y. Kitamura, and M. Kohda, “Cooperatively breeding cichlid fish adjust their testis size but not sperm traits in relation to sperm competition risk,” Behavioral Ecology and Sociobiology, vol. 62, no. 11, pp. 1701–1710, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. G. A. Parker, “Sperm competition games: sneaks and extra-pair copulations,” Proceedings of the Royal Society B, vol. 242, no. 1304, pp. 127–133, 1990. View at Google Scholar · View at Scopus
  20. M. A. Ball and G. A. Parker, “Sperm competition games: external fertilization and “adaptive” infertility,” Journal of Theoretical Biology, vol. 180, no. 2, pp. 141–150, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Zbinden, D. Mazzi, R. Künzler, C. R. Largiadèr, and T. C. M. Bakker, “Courting virtual rivals increase ejaculate size in sticklebacks (Gasterosteus aculeatus),” Behavioral Ecology and Sociobiology, vol. 54, no. 3, pp. 205–209, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Zbinden, C. R. Largiadèr, and T. C. M. Bakker, “Body size of virtual rivals affects ejaculate size in sticklebacks,” Behavioral Ecology, vol. 15, no. 1, pp. 137–140, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Boschetto, C. Gasparini, and A. Pilastro, “Sperm number and velocity affect sperm competition success in the guppy (Poecilia reticulata),” Behavioral Ecology and Sociobiology, vol. 65, no. 4, pp. 813–821, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. B. D. Neff, P. Fu, and M. R. Gross, “Sperm investment and alternative mating tactics in bluegill sunfish (Lepomis macrochirus),” Behavioral Ecology, vol. 14, no. 5, pp. 634–641, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Schütz, G. Pachler, E. Ripmeester, O. Goffinet, and M. Taborsky, “Reproductive investment of giants and dwarfs: specialized tactics in a cichlid fish with alternative male morphs,” Functional Ecology, vol. 24, no. 1, pp. 131–140, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Bjork and S. Pitnick, “Intensity of sexual selection along the anisogamy-isogamy continuum,” Nature, vol. 441, no. 7094, pp. 742–745, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Gomendio and E. R. S. Roldan, “Implications of diversity in sperm size and function for sperm competition and fertility,” International Journal of Developmental Biology, vol. 52, no. 5-6, pp. 439–447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. C. W. LaMunyon and S. Ward, “Larger sperm outcompete smaller sperm in the nematode Caenorhabditis elegans,” Proceedings of the Royal Society B, vol. 265, no. 1409, pp. 1997–2002, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Gomendio and E. R. S. Roldan, “Sperm competition influences sperm size in mammals,” Proceedings of the Royal Society B, vol. 243, no. 1308, pp. 181–185, 1991. View at Google Scholar · View at Scopus
  30. P. G. Byrne, L. W. Simmons, and J. D. Roberts, “Sperm competition and the evolution of gamete morphology in frogs,” Proceedings of the Royal Society B, vol. 270, no. 1528, pp. 2079–2086, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. J. V. Briskie, R. Montgomerie, and T. R. Birkhead, “The evolution of sperm size in birds,” Evolution, vol. 51, no. 3, pp. 937–945, 1997. View at Google Scholar · View at Scopus
  32. S. Immler and T. R. Birkhead, “Sperm competition and sperm midpiece size: no consistent pattern in passerine birds,” Proceedings of the Royal Society B, vol. 274, no. 1609, pp. 561–568, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. K. R. McKaye, “Ecology and breeding behavior of a cichlid fish, Cyrtocara eucinostomus, on a large lek in Lake Malawi, Africa,” Environmental Biology of Fishes, vol. 8, no. 2, pp. 81–96, 1983. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Kuwamura, “Male mating territory and sneaking in a maternal mouthbrooder, Pseudosimochromis curvifrons (Pisces; Cichlidae),” Journal of Ethology, vol. 5, no. 2, pp. 203–206, 1987. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Taborsky, “Sperm competition in fish: “bourgeois” males and parasitic spawning,” Trends in Ecology and Evolution, vol. 13, no. 6, pp. 222–227, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Ota and M. Kohda, “Description of alternative male reproductive tactics in a shell-brooding cichlid, Telmatochromis vittatus, in Lake Tanganyika,” Journal of Ethology, vol. 24, no. 1, pp. 9–15, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Dierkes, M. Taborsky, and R. Achmann, “Multiple paternity in the cooperatively breeding fish Neolamprologus pulcher,” Behavioral Ecology and Sociobiology, vol. 62, no. 10, pp. 1581–1589, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. K. M. Sefc, K. Mattersdorfer, C. Sturmbauer, and S. Koblmüller, “High frequency of multiple paternity in broods of a socially monogamous cichlid fish with biparental nest defence,” Molecular Ecology, vol. 17, no. 10, pp. 2531–2543, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. M. I. Taylor, J. I. Morley, C. Rico, and S. Balshine, “Evidence for genetic monogamy and female-biased dispersal in the biparental mouthbrooding cichlid Eretmodus cyanostictus from Lake Tanganyika,” Molecular Ecology, vol. 12, no. 11, pp. 3173–3177, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Egger, B. Obermüller, H. Phiri, C. Sturmbauer, and K. M. Sefc, “Monogamy in the maternally mouthbrooding Lake Tanganyika cichlid fish Tropheus moorii,” Proceedings of the Royal Society B, vol. 273, no. 1595, pp. 1797–1802, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. J. L. Fitzpatrick, R. Montgomerie, J. K. Desjardins, K. A. Stiver, N. Kolm, and S. Balshine, “Female promiscuity promotes the evolution of faster sperm in cichlid fishes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 4, pp. 1128–1132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. A. A. Adebisi, “The relationship between the fecundities, gonadosomatic indexes and egg size of some fishes of Ogun river, Nigeria,” Archiv für Hydrobiologie, vol. 111, no. 1, pp. 151–156, 1987. View at Google Scholar
  43. R. Katoh, H. Munehara, and M. Kohda, “Alternative male mating tactics of the substrate brooding cichlid Telmatochromis temporalis in Lake Tanganyika,” Zoological Science, vol. 22, no. 5, pp. 555–561, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. J. K. Desjardins, J. L. Fitzpatrick, K. A. Stiver, G. J. van der Kraak, and S. Balshine, “Costs and benefits of polygyny in the cichlid Neolamprologus pulcher,” Animal Behaviour, vol. 75, no. 5, pp. 1771–1779, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. N. H. Chao, W. C. Chao, K. C. Liu, and I. C. Liao, “The properties of tilapia sperm and its cryopreservation,” Journal of Fish Biology, vol. 30, no. 2, pp. 107–118, 1987. View at Google Scholar
  46. T. Thünken, T. C. M. Bakker, and H. Kullmann, “Extraordinarily long sperm in the socially monogamous cichlid fish Pelvicachromis taeniatus,” Naturwissenschaften, vol. 94, no. 6, pp. 489–491, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Thünken, On mate choice, kin recognition and the adaptive significance of inbreeding in the cichlid fish Pelvicachromis taeniatus [Ph.D. thesis], University of Bonn, Bonn, Germany, 2008.
  48. E. Martin and M. Taborsky, “Alternative male mating tactics in a cichlid, Pelvicachromis pulcher: a comparison of reproductive effort and success,” Behavioral Ecology and Sociobiology, vol. 41, no. 5, pp. 311–319, 1997. View at Publisher · View at Google Scholar · View at Scopus
  49. S. B. M. Kraak, T. C. M. Bakker, and B. Mundwiler, “Sexual selection in sticklebacks in the field: correlates of reproductive, mating, and paternal success,” Behavioral Ecology, vol. 10, no. 6, pp. 696–706, 1999. View at Google Scholar · View at Scopus
  50. S. A. Baldauf, H. Kullmann, S. H. Schroth, T. Thünken, and T. C. Bakker, “You can't always get what you want: size assortative mating by mutual mate choice as a resolution of sexual conflict,” BMC Evolutionary Biology, vol. 9, no. 1, article 129, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Thünken, S. A. Baldauf, H. Kullmann, J. Schuld, S. Hesse, and T. C. M. Bakker, “Size-related inbreeding preference and competitiveness in male Pelvicachromis taeniatus (Cichlidae),” Behavioral Ecology, vol. 22, no. 2, pp. 358–362, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Langen, J. Schwarzer, H. Kullmann, T. C. M. Bakker, and T. Thünken, “Microsatellite support for active inbreeding in a cichlid fish,” PLoS ONE, vol. 6, no. 9, Article ID e24689, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Thünken, T. C. M. Bakker, S. A. Baldauf, and H. Kullmann, “Direct familiarity does not alter mating preference for sisters in male Pelvicachromis taeniatus (Cichlidae),” Ethology, vol. 113, no. 11, pp. 1107–1112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Lamboj, Die Cichliden des Westlichen Afrikas, Birgit Schmettkamp, Bornheim, Germany, 2004.
  55. S. Sjölander, “Feldbeobachtungen an einigen westafrikanischen Cichliden,” Die Aquarien- und Terrarienzeitschrift, vol. 19, no. 2, pp. 42–45, 1972. View at Google Scholar
  56. B.-Y. Lee, W.-J. Lee, J. T. Streelman et al., “A second-generation genetic linkage map of tilapia (Oreochromis spp.),” Genetics, vol. 170, no. 1, pp. 237–244, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. U. Schliewen, K. Rassmann, M. Markmann, J. Markert, T. Kocher, and D. Tautz, “Genetic and ecological divergence of a monophyletic cichlid species pair under fully sympatric conditions in Lake Ejagham, Cameroon,” Molecular Ecology, vol. 10, no. 6, pp. 1471–1488, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Schuelke, “An economic method for the fluorescent labeling of PCR fragments,” Nature Biotechnology, vol. 18, no. 2, pp. 233–234, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. B. D. Neff, P. Fu, and M. R. Gross, “Microsatellite multiplexing in fish,” Transactions of the American Fisheries Society, vol. 129, no. 2, pp. 584–593, 2000. View at Google Scholar · View at Scopus
  60. K. A. Selkoe and R. J. Toonen, “Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers,” Ecology Letters, vol. 9, no. 5, pp. 615–629, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Dewoody, J. D. Nason, and V. D. Hipkins, “Mitigating scoring errors in microsatellite data from wild populations,” Molecular Ecology Notes, vol. 6, no. 4, pp. 951–957, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Wang, “Sibship reconstruction from genetic data with typing errors,” Genetics, vol. 166, no. 4, pp. 1963–1979, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. O. R. Jones and J. Wang, “COLONY: a program for parentage and sibship inference from multilocus genotype data,” Molecular Ecology Resources, vol. 10, no. 3, pp. 551–555, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. T. Thünken, T. C. M. Bakker, S. A. Baldauf, and H. Kullmann, “Active inbreeding in a cichlid fish and its adaptive significance,” Current Biology, vol. 17, no. 3, pp. 225–229, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2009.
  66. G. A. Parker and M. E. Begon, “Sperm competition games: sperm size and number under gametic control,” Proceedings of the Royal Society B, vol. 253, no. 1338, pp. 255–262, 1993. View at Google Scholar · View at Scopus
  67. E. H. Morrow and M. J. G. Gage, “Consistent significant variation between individual males in spermatozoal morphometry,” Journal of Zoology, vol. 254, no. 2, pp. 147–153, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. S. B. Joseph and M. Kirkpatrick, “Haploid selection in animals,” Trends in Ecology and Evolution, vol. 19, no. 11, pp. 592–597, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. G. W. Barlow, “Mate choice in the monogamous and polychromatic Midas cichlid, Cichlasoma citrinellum,” Journal of Fish Biology, vol. 29, pp. 123–133, 1986. View at Google Scholar
  70. J. A. DeWoody, D. E. Fletcher, S. D. Wilkins, W. S. Nelson, and J. C. Avise, “Genetic monogamy and biparental care in an externally fertilizing fish, the largemouth bass (Micropterus salmoides),” Proceedings of the Royal Society B, vol. 267, no. 1460, pp. 2431–2437, 2000. View at Publisher · View at Google Scholar · View at Scopus
  71. J. E. Mank, D. E. L. Promislow, and J. C. Avise, “Phylogenetic perspectives in the evolution of parental care in ray-finned fishes,” Evolution, vol. 59, no. 7, pp. 1570–1578, 2005. View at Google Scholar · View at Scopus
  72. J. R. Baylis, “The evolution of parental care in fishes, with reference to Darwin's rule of male sexual selection,” Environmental Biology of Fishes, vol. 6, no. 2, pp. 223–251, 1981. View at Publisher · View at Google Scholar · View at Scopus
  73. G. W. Barlow, The Cichlid Fishes–Nature's Grand Experiment in Evolution, Perseus Publishing, Cambridge, Mass, USA, 2000.
  74. T. Kuwamura, “Parental care and mating systems of cichlid fishes in Lake Tanganyika: a preliminary field survey,” Journal of Ethology, vol. 4, no. 2, pp. 129–146, 1986. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Tatarenkov, F. Barreto, D. L. Winkelman, and J. C. Avise, “Genetic monogamy in the channel catfish, Ictalurus punctatus, a species with uniparental nest guarding,” Copeia, vol. 2006, no. 4, pp. 735–741, 2006. View at Google Scholar · View at Scopus
  76. A. G. Jones and J. C. Avise, “Mating systems and sexual selection in male-pregnant pipefishes and seahorses: insights from microsatellite-based studies of maternity,” Journal of Heredity, vol. 92, no. 2, pp. 150–158, 2001. View at Google Scholar · View at Scopus
  77. T. Takahashi, H. Ochi, M. Kohda, and M. Hori, “Invisible pair bonds detected by molecular analyses,” Biology Letters, vol. 8, no. 3, pp. 355–357, 2012. View at Google Scholar
  78. S. G. Reebs and P. W. Colgan, “Nocturnal care of eggs and circadian rhythms of fanning activity in two normally diurnal cichlid fishes, Cichlasoma nigrofasciatum and Herotilapia multispinosa,” Animal Behaviour, vol. 41, no. 2, pp. 303–311, 1991. View at Google Scholar · View at Scopus
  79. S. G. Reebs, “Nocturnal mate recognition and nest guarding by female convict cichlids (Pisces, Cichlidae: Cichlasoma nigrofasciatum),” Ethology, vol. 96, no. 4, pp. 303–312, 1994. View at Google Scholar
  80. R. J. Lavery and S. G. Reebs, “Effect of mate removal on current and subsequent parental care in the convict cichlid (Pisces: Cichlidae),” Ethology, vol. 97, no. 4, pp. 265–277, 1994. View at Google Scholar
  81. K. C. Noonan, “Female mate choice in the cichlid fish Cichlasoma nigrofasciatum,” Animal Behaviour, vol. 31, no. 4, pp. 1005–1010, 1983. View at Google Scholar · View at Scopus
  82. S. B. M. Kraak and T. C. M. Bakker, “Mutual mate choice in sticklebacks: attractive males choose big females, which lay big eggs,” Animal Behaviour, vol. 56, no. 4, pp. 859–866, 1998. View at Publisher · View at Google Scholar · View at Scopus
  83. L. D. Dosen and R. Montgomerie, “Mate preferences by male guppies (Poecilia reticulata) in relation to the risk of sperm competition,” Behavioral Ecology and Sociobiology, vol. 55, no. 3, pp. 266–271, 2004. View at Publisher · View at Google Scholar · View at Scopus