Table of Contents
Corrigendum

A corrigendum for this article has been published. To view the corrigendum, please click here.

International Journal of Evolutionary Biology
Volume 2013, Article ID 926702, 6 pages
http://dx.doi.org/10.1155/2013/926702
Research Article

A Survey of Eyespot Sexual Dimorphism across Nymphalid Butterflies

1Yale College, New Haven, CT 06511, USA
2Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
3Department of Zoology, Oregon State University, Corvallis, OR 97331, USA
4Department of Biological Sciences, National University of Singapore and Yale-NUS College, Singapore 117543

Received 30 July 2013; Accepted 22 October 2013

Academic Editor: Amitabh Joshi

Copyright © 2013 Christopher K. Tokita et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. E. Allen, B. J. Zwaan, and P. M. Brakefield, “Evolution of sexual dimorphism in the Lepidoptera,” Annual Review of Entomology, vol. 56, pp. 445–464, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. D. J. Fairbairn, Odd Couples: Extraordinary Differences between the Sexes in the Animal Kingdom, Princeton University Press, Princeton, NJ, USA, 2013.
  3. M. J. Kottler, “Darwin, Wallace, and the origin of sexual dimorphism,” Proceedings of the American Philosophical Society, vol. 124, no. 3, pp. 203–226, 1980. View at Google Scholar · View at Scopus
  4. J. J. Wiens, “Widespread loss of sexually selected traits: how the peacock lost its spots,” Trends in Ecology and Evolution, vol. 16, no. 9, pp. 517–523, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. P. M. Brakefield and W. A. Frankino, “Polyphenisms in Lepidoptera: multidisciplinary approaches to studies of evolution and development,” in Phenotypic Plasticity in Insects Mechanisms and Consequences, D. W. Whitman and T. N. Ananthakrishnan, Eds., pp. 281–312, Science, Plymouth, UK, 2009. View at Google Scholar
  6. A. Lyytinen, P. M. Brakefieid, and J. Mappes, “Significance of butterfly eyespots as an anti-predator device in ground-based and aerial attacks,” Oikos, vol. 100, no. 2, pp. 373–379, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. K. L. Prudic, C. Jeon, H. Cao, and A. Monteiro, “Developmental plasticity in sexual roles of butterfly species drives mutual sexual ornamentation,” Science, vol. 331, no. 6013, pp. 73–75, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. K. A. Robertson and A. Monteiro, “Female Bicyclus anynana butterflies choose males on the basis of their dorsal UV-reflective eyespot pupils,” Proceedings of the Royal Society B, vol. 272, no. 1572, pp. 1541–1546, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. C. Oliver, K. A. Robertson, and A. Monteiro, “Accommodating natural and sexual selection in butterfly wing pattern evolution,” Proceedings of the Royal Society B, vol. 276, no. 1666, pp. 2369–2375, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. J. C. Oliver and A. Monteiro, “On the origins of sexual dimorphism in butterflies,” Proceedings of the Royal Society B, vol. 278, no. 1714, pp. 1981–1988, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. J. C. Oliver, X. Tong, L. F. Gall, W. H. Piel, and A. Monteiro, “A single origin for nymphalid butterfly eyespots followed by widespread loss of associated gene expression,” PLoS Genetics, vol. 8, no. 8, Article ID e1002893, 2012. View at Publisher · View at Google Scholar
  12. A. Monteiro, “Alternative models for the evolution of eyespots and of serial homology on Lepidopteran wings,” BioEssays, vol. 30, no. 4, pp. 358–366, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Westerman, A. Hodgins-Davis, A. Dinwiddie, and A. Monteiro, “Biased learning affects mate choice in a butterfly,” Proceedings of the National Academy of Sciences of the USA, vol. 109, no. 27, pp. 10948–10953, 2012. View at Publisher · View at Google Scholar
  14. M. Olofsson, A. Vallin, S. Jakobsson, and C. Wiklund, “Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths,” PLoS ONE, vol. 5, no. 5, Article ID e10798, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. U. Kodandaramaiah, “The evolutionary significance of butterfly eyespots,” Behavioral Ecology, vol. 22, no. 6, pp. 1264–1271, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Merilaita, A. Vallin, U. Kodandaramaiah, M. Dimitrova, S. Ruuskanen, and T. Laaksonen, “Number of eyespots and their intimidating effect on naïve predators in the peacock butterfly,” Behavioral Ecology, vol. 22, no. 6, pp. 1326–1331, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Stevens, “The role of eyespots as anti-predator mechanisms, principally demonstrated in the Lepidoptera,” Biological Reviews of the Cambridge Philosophical Society, vol. 80, no. 4, pp. 573–588, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Stevens, C. J. Hardman, and C. L. Stubbins, “Conspicuousness, not eye mimicry, makes “eyespots” effective antipredator signals,” Behavioral Ecology, vol. 19, no. 3, pp. 525–531, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Vallin, S. Jakobsson, J. Lind, and C. Wiklund, “Prey survival by predator intimidation: an experimental study of peacock butterfly defence against blue tits,” Proceedings of the Royal Society B, vol. 272, no. 1569, pp. 1203–1207, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Vallin, S. Jakobsson, and C. Wiklund, ““An eye for an eye?” On the generality of the intimidating quality of eyespots in a butterfly and a hawkmoth,” Behavioral Ecology and Sociobiology, vol. 61, no. 9, pp. 1419–1424, 2007. View at Publisher · View at Google Scholar · View at Scopus