Table of Contents
International Journal of Evolutionary Biology
Volume 2014 (2014), Article ID 856230, 16 pages
http://dx.doi.org/10.1155/2014/856230
Research Article

Conservation and Variability of Synaptonemal Complex Proteins in Phylogenesis of Eukaryotes

Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin Street 3, GSP-1 Russian Federation, Moscow 119991, Russia

Received 1 March 2014; Revised 2 June 2014; Accepted 24 June 2014; Published 23 July 2014

Academic Editor: Yoko Satta

Copyright © 2014 Tatiana M. Grishaeva and Yuri F. Bogdanov. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Cavalier-Smith, “Origins of the machinery of recombination and sex,” Heredity, vol. 88, no. 2, pp. 125–141, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Li and G.-C. Zheng, “A resurgent phoenix—a hypothesis for the origin of meiosis,” IUBMB Life, vol. 54, no. 1, pp. 9–12, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. M. A. Ramesh, S. Malik, and J. M. Logsdon Jr., “A phylogenomic inventory of meiotic genes: evidence for sex in Giardia and an early eukaryotic origin of meiosis,” Current Biology, vol. 15, no. 2, pp. 185–191, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. F. Bogdanov, T. M. Grishaeva, and S. Y. Dadashev, “Similarity of the domain structure of proteins as a basis for the conservation of meiosis,” International Review of Cytology, vol. 257, pp. 83–142, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Egel and D. Penny, “On the origin of meiosis in eukaryotic evolution: coevolution of meiosis and mitosis from feeble beginnings,” in Genome Dynamics and Stability, R. Egel and D.-H. Lankenau, Eds., vol. 3, pp. 249–288, Springer, Berlin, Germany, 2007. View at Google Scholar
  6. A. S. Wilkins and R. Holliday, “The evolution of meiosis from mitosis,” Genetics, vol. 181, no. 1, pp. 3–12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Zickler and N. Kleckner, “The leptotene-zygotene transition of meiosis,” Annual Review of Genetics, vol. 32, pp. 619–697, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Zickler and N. Kleckner, “Meiotic chromosomes: integrating structure and function,” Annual Review of Genetics, vol. 33, pp. 603–754, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Kleckner, “Chiasma formation: Chromatin/axis interplay and the role(s) of the synaptonemal complex,” Chromosoma, vol. 115, no. 3, pp. 175–194, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. S. L. Page and R. S. Hawley, “The genetics and molecular biology of the synaptonemal complex,” Annual Review of Cell and Developmental Biology, vol. 20, pp. 525–558, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Anuradha and K. Muniyappa, “Molecular aspects of meiotic chromosome synapsis and recombination,” Progress in Nucleic Acid Research and Molecular Biology, vol. 79, pp. 49–132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Egel-Mitani, L. W. Olson, and R. Egel, “Meiosis in Aspergillus nidulans: another example for lacking synaptonemal complexes in the absence of crossover interference,” Hereditas, vol. 97, no. 2, pp. 179–187, 1982. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Heyting, “Synaptonemal complexes: structure and function,” Current Opinion in Cell Biology, vol. 8, no. 3, pp. 389–396, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. M. V. Penkina, O. I. Karpova, and Y. F. Bogdanov, “Synaptonemal complex proteins: specific proteins of meiotic chromosomes,” Molecular Biology, vol. 36, no. 3, pp. 304–313, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. P. B. Møens and R. E. Pearlman, “Chromatin organization at meiosis,” BioEssays, vol. 9, no. 5, pp. 151–153, 1988. View at Publisher · View at Google Scholar · View at Scopus
  16. A. V. Smith and G. S. Roeder, “Cloning and characterization of the Kluyveromyces lactis homologs of the Saccharomyces cerevisiae RED1 and HOP1 genes,” Chromosoma, vol. 109, no. 1-2, pp. 50–61, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Revenkova and R. Jessberger, “Shaping meiotic prophase chromosomes: cohesins and synaptonemal complex proteins,” Chromosoma, vol. 115, no. 3, pp. 235–240, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Eijpe, C. Heyting, B. Gross, and R. Jessberger, “Association of mammalian SMC1 and SMC3 proteins with meiotic chromosomes and synaptonemal complexes,” Journal of Cell Science, vol. 113, no. 4, pp. 673–682, 2000. View at Google Scholar · View at Scopus
  19. N. M. Hollingsworth, L. Goetsch, and B. Byers, “The HOP1 gene encodes a meiosis-specific component of yeast chromosomes,” Cell, vol. 61, no. 1, pp. 73–84, 1990. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Lorenz, J. L. Wells, D. W. Pryce et al., “S. pombe meiotic linear elements contain proteins related to synaptonemal complex components,” Journal of Cell Science, vol. 117, part 15, pp. 3343–3351, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Sym, J. Engebrecht, and G. S. Roeder, “ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis,” Cell, vol. 72, no. 3, pp. 365–378, 1993. View at Publisher · View at Google Scholar · View at Scopus
  22. R. L. J. Meuwissen, H. H. Offenberg, A. J. J. Dietrich, A. Riesewijk, M. Van Iersel, and C. Heyting, “A coiled-coil related protein specific for synapsed regions of meiotic prophase chromosomes,” EMBO Journal, vol. 11, no. 13, pp. 5091–5100, 1992. View at Google Scholar · View at Scopus
  23. M. J. Dobson, R. E. Pearlman, A. Karaiskakis, B. Spyropoulos, and P. B. Moens, “Synaptonemal complex proteins: occurrence, epitope mapping and chromosome disjunction,” Journal of Cell Science, vol. 107, no. 10, pp. 2749–2760, 1994. View at Google Scholar · View at Scopus
  24. H. H. Offenberg, J. A. C. Schalk, R. L. J. Meuwissen et al., “SCP2: a major protein component of the axial elements of synaptonemal complexes of the rat,” Nucleic Acids Research, vol. 26, no. 11, pp. 2572–2579, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. J. H. M. Lammers, H. H. Offenberg, M. van Aalderen, A. C. G. Vink, A. J. J. Dietrich, and C. Heyting, “The gene encoding a major component of the lateral elements of synaptonemal complexes of the rat is related to X-linked lymphocyte-regulated genes,” Molecular and Cellular Biology, vol. 14, no. 2, pp. 1137–1146, 1994. View at Google Scholar · View at Scopus
  26. J. Liu, L. Yuan, E. Brundell, B. Björkroth, B. Daneholt, and C. Höög, “Localization of the N-terminus of SCP1 to the central element of the synaptonemal complex and evidence for direct interactions between the N-termini of SCP1 molecules organized head-to-head,” Experimental Cell Research, vol. 226, no. 1, pp. 11–19, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. J. D. Higgins, E. Sanchez-Moran, S. J. Armstrong, G. H. Jones, and F. C. H. Franklin, “The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over,” Genes and Development, vol. 19, no. 20, pp. 2488–2500, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Osman, E. Sanchez-Moran, J. D. Higgins, G. H. Jones, and F. C. H. Franklin, “Chromosome synapsis in Arabidopsis: analysis of the transverse filament protein ZYP1 reveals novel functions for the synaptonemal complex,” Chromosoma, vol. 115, no. 3, pp. 212–219, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. S. L. Page and R. S. Scott Hawley, “c(3)G encodes a Drosophila synaptonemal complex protein,” Genes and Development, vol. 15, no. 23, pp. 3130–3143, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. T. M. Grishaeva, S. Ya. Dadashev, and Yu. F. Bogdanov, “Gene CG17604 of Drosophila melanogaster predicted in silico may be the c(3)G gene,” Drosophila Information Service, vol. 84, pp. 84–88, 2001. View at Google Scholar
  31. M. P. Colaiácovo, “The many facets of SC function during C. elegans meiosis,” Chromosoma, vol. 115, no. 3, pp. 195–211, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Dong and G. S. Roeder, “Organization of the yeast Zip1 protein within the central region of the synaptonemal complex,” Journal of Cell Biology, vol. 148, no. 3, pp. 417–426, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. S. L. Page and R. S. Hawley, “Chromosome choreography: the meiotic ballet,” Science, vol. 301, no. 5634, pp. 785–789, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Costa, R. Speed, R. Öllinger et al., “Two novel proteins recruited by synaptonemal complex protein 1 (SYCP1) are at the centre of meiosis,” Journal of Cell Science, vol. 118, no. 12, pp. 2755–2762, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Hamer, K. Gell, A. Kouznetsova, I. Novak, R. Benavente, and C. Höög, “Characterization of a novel meiosis-specific protein within the central element of the synaptonemal complex,” Journal of Cell Science, vol. 119, no. 19, pp. 4025–4032, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Schramm, J. Fraune, R. Naumann et al., “A novel mouse synaptonemal complex protein is essential for loading of central element proteins, recombination, and fertility,” PLoS Genetics, vol. 7, no. 5, Article ID e1002088, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. J. A. C. Schalk, H. H. Offenberg, E. Peters, N. P. B. Groot, J. M. N. Hoovers, and C. Heyting, “Isolation and characterization of the human SCP2 cDNA and chromosomal localization of the gene,” Mammalian Genome, vol. 10, no. 6, pp. 642–644, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. M. C. Zetka, I. Kawasaki, S. Strome, and F. Müller, “Synapsis and chiasma formation in Caenorhabditis elegans require HIM-3, a meiotic chromosome core component that functions in chromosome segregation,” Genes and Development, vol. 13, no. 17, pp. 2258–2270, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. A. P. Caryl, S. J. Armstrong, G. H. Jones, and F. C. H. Franklin, “A homologue of the yeast HOP1 gene is inactivated in the Arabidopsis meiotic mutant asy1,” Chromosoma, vol. 109, no. 1-2, pp. 62–71, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Yuan, J. G. Liu, J. Zhao, E. Brundell, B. Daneholt, and C. Höög, “The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility,” Molecular Cell, vol. 5, no. 1, pp. 73–83, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Fraune, M. Alsheimer, J. Volff et al., “Hydra meiosis reveals unexpected conservation of structural synaptonemal complex proteins across metazoans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 41, pp. 16588–16593, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Fraune, C. Brochier-Armanet, M. Alsheimer, and R. Benavente, “Phylogenies of central element proteins reveal the dynamic evolutionary history of the mammalian synaptonemal complex: ancient and recent components,” Genetics, vol. 195, pp. 781–793, 2013. View at Google Scholar
  43. N. V. Grishin, “Estimation of the number of amino acid substitutions per site when the substitution rate varies among sites,” Journal of Molecular Evolution, vol. 41, no. 5, pp. 675–679, 1995. View at Google Scholar · View at Scopus
  44. J. Dacks and A. J. Roger, “The first sexual lineage and the relevance of facultative sex,” Journal of Molecular Evolution, vol. 48, no. 6, pp. 779–783, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. J. L. Reedy, A. M. Floyd, and J. Heitman, “Mechanistic plasticity of sexual reproduction and meiosis in the Candida pathogenic species complex,” Current Biology, vol. 19, no. 11, pp. 891–899, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Westergaard and D. von Wettstein, “The synaptinemal complex,” Annual Review of Genetics, vol. 6, pp. 71–110, 1972. View at Publisher · View at Google Scholar · View at Scopus
  47. B. C. Lu, “Karyotyping of Neurospora crassa using synaptonemal complex spreads of translocation quadrivalents,” Genome, vol. 49, no. 6, pp. 612–618, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. S. N. Acharya, A. M. Many, A. P. Schroeder et al., “Coprinus cinereus rad50 mutants reveal an essential structural role for Rad50 in axial element and synaptonemal complex formation, homolog pairing and meiotic recombination,” Genetics, vol. 180, no. 4, pp. 1889–1907, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. E. del Cacho, M. Pages, M. Gallego, L. Monteagudo, and C. Sánchez-Acedo, “Synaptonemal complex karyotype of Eimeria tenella,” International Journal for Parasitology, vol. 35, no. 13, pp. 1445–1451, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Mochizuki, M. Novatchkova, and J. Loidl, “DNA double-strand breaks, but not crossovers, are required for the reorganization of meiotic nuclei in Tetrahymena,” Journal of Cell Science, vol. 121, no. 13, pp. 2148–2158, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. J. M. Cock, A. F. Peters, and S. M. Coelho, “Brown algae,” Current Biology, vol. 21, no. 15, pp. R573–R575, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. N. King, M. J. Westbrook, S. L. Young et al., “The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans,” Nature, vol. 451, no. 7180, pp. 783–788, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. T. M. Grishaeva and I. A. Zakharov, “Comparison of eukaryotic nuclear proteins with prokaryotic proteins: implications for eukaryogenesis,” Current Topics in Genetics, vol. 5, pp. 31–36, 2012. View at Google Scholar
  54. K. Daniel, J. Lange, K. Hached et al., “Meiotic homologue alignment and its quality surveillance are controlled by mouse HORMAD1,” Nature Cell Biology, vol. 13, no. 5, pp. 599–610, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. C. G. Kurland, L. J. Collins, and D. Penny, “Genomics and the irreducible nature of eukaryote cells,” Science, vol. 312, no. 5776, pp. 1011–1014, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. E. V. Koonin and Y. I. Wolf, “The common ancestry of life,” Biology Direct, vol. 5, article 64, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. T. A. Richards and J. M. Archibald, “Cell evolution: gene transfer agents and the origin of mitochondria,” Current Biology, vol. 21, no. 3, pp. R112–R114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. C. Esser, W. Martin, and T. Dagan, “The origin of mitochondria in light of a fluid prokaryotic chromosome model,” Biology Letters, vol. 3, no. 2, pp. 180–184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. F. Bogdanov, S. Y. Dadashev, and T. M. Grishaeva, “Comparative genomics and proteomics of Drosophila , Brenner’s nematode, and Arabidopsis : identification of functionally similar genes and proteins of meiotic chromosome synapsis,” Russian Journal of Genetics, vol. 38, no. 8, pp. 908–917, 2002. View at Publisher · View at Google Scholar · View at Scopus