Table of Contents Author Guidelines Submit a Manuscript

An erratum for this article has been published. To view the erratum, please click here.

International Journal of Ecology
Volume 2013, Article ID 658140, 8 pages
Research Article

Development of Allometric Equations for Estimating Above-Ground Liana Biomass in Tropical Primary and Secondary Forests, Malaysia

1School of Biological Sciences, University of Science Malaysia, 11800 Pulau Penang, Penang, Malaysia
2Department of Theoretical and Applied Biology, College of Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana

Received 26 February 2013; Accepted 4 June 2013

Academic Editor: Shibu Jose

Copyright © 2013 Patrick Addo-Fordjour and Zakaria B. Rahmad. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The study developed allometric equations for estimating liana stem and total above-ground biomass in primary and secondary forests in the Penang National Park, Penang, Malaysia. Using biomass-diameter-length data of 60 liana individuals representing 15 species, allometric equations were developed for liana stem biomass and total above-ground biomass (TAGB). Three types of allometric equations were developed: models fitted to untransformed, weighted, and log-transformed (log10) data. There was a significant linear relationship between biomass and the predictors (diameter, length, and/or their combinations). The same set of models was developed for primary and secondary forests due to absence of differences in regression line slopes of the forests (ANCOVA: ). The coefficients of determination values of the models were high (stem: 0.861 to 0.990; TAGB: 0.900 to 0.992). Generally, log-transformed models showed better fit (Furnival's index, FI < 0.50) than the other models (FI > 0.5). A comparison of the best TAGB model in this study (based on FI) with previously published equations indicated that most of the equations significantly ( ) overestimated TAGB of lianas. However, a previous equation from Southeast Asia estimated TAGB similar to that of the current equation ( ). Therefore, regional or intracontinental equations should be preferred to intercontinental equations when estimating liana biomass.