Table of Contents Author Guidelines Submit a Manuscript
International Journal of Ecology
Volume 2015 (2015), Article ID 612194, 12 pages
http://dx.doi.org/10.1155/2015/612194
Research Article

Combining Niche Modelling, Land-Use Change, and Genetic Information to Assess the Conservation Status of Pouteria splendens Populations in Central Chile

1Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, Building E8B, Room 206, Sydney, NSW 2109, Australia
2Ecomabi Foundation, Ahumada 312, Oficina 425, 8320185 Santiago, Chile
3Landscape Ecology & Sustainability Laboratory, Arizona State University, LSE Building, Room 704, Tempe, AZ 85287, USA
4Department of Crop Sciences, Faculty of Agronomy and Forestry Engineering, Pontifical Catholic University of Chile, Avenida Vicuña Mackenna 4860, San Joaquin, 7820436 Santiago, Chile

Received 9 June 2015; Revised 11 October 2015; Accepted 19 October 2015

Academic Editor: Ram Chander Sihag

Copyright © 2015 Narkis S. Morales et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Muñoz and M. Serra, Estado de Conservación de las Plantas de Chile. Documento de Trabajo, vol. 113, Museo Nacional de Historia Natural y Comisión Nacional del Medio Ambiente (MNHN-CONAMA), 2006.
  2. P. Hechenleitner, M. F. Gardner, P. I. Thomas et al., Plantas Amenazadas del Centro-Sur de Chile: Distribución, Conservación y Propagación, Universidad Austral de Chile, Valdivia, Chile, 2005.
  3. F. Squeo, G. Arancio, and J. Gutiérrez, Libro Rojo de la Flora Nativa y de los Sitios Prioritarios para su Conservación: Región de Coquimbo, Ediciones Universidad de La Serena, La Serena, Chile, 2001.
  4. Ministerio de Medio Ambiente de Chile, “Inventario Nacional de Especies,” 2014, http://especies.mma.gob.cl/CNMWeb/Web/WebCiudadana/Default.aspx.
  5. IUCN, “IUCN Red List of Threatened Species. Version 2014.3,” 2015, http://www.iucnredlist.org/.
  6. C. A. Henríquez, G. J. Sotes, and R. O. Bustamante, “Fenología reproductiva de Pouteria splendens (Sapotaceae),” Gayana Botánica, vol. 69, no. 2, pp. 251–255, 2012. View at Publisher · View at Google Scholar
  7. G. Sotes, R. O. Bustamante, and C. Henríquez, “Distribución de plántulas y germinación de semillas del lúcumo chileno (Pouteria splendens) en Los Molles, Chile,” Revista Chilena de Historia Natural, vol. 88, no. 3, pp. 337–344, 2013. View at Publisher · View at Google Scholar
  8. J. M. Quintana and P. Aceituno, “Changes in the rainfall regime along the extratropical west coast of south America (Chile): 30–43°S,” Atmosfera, vol. 25, no. 1, pp. 1–22, 2011. View at Google Scholar · View at Scopus
  9. N. Schulz, J. P. Boisier, and P. Aceituno, “Climate change along the arid coast of northern Chile,” International Journal of Climatology, vol. 32, no. 12, pp. 1803–1814, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Montenegro, R. Ginocchio, A. Segura, J. E. Keely, and M. Gómez, “Fire regimes and vegetation responses in two Mediterranean-climate regions,” Revista Chilena de Historia Natural, vol. 77, no. 3, pp. 455–464, 2004. View at Google Scholar · View at Scopus
  11. CONAMA, Estudio de la Variabilidad Climática en Chile para el Siglo XXI: Informe Final, Departamento de Geofísica de la Facultad de Ciencias, Físicas y Matemáticas, Universidad de Chile, Santiago, Chile, 2006.
  12. A. Lammi, P. Siikamäki, and K. Mustajärvi, “Genetic diversity, population size, and fitness in central and peripheral populations of a rare plant Lychnis viscaria,” Conservation Biology, vol. 13, no. 5, pp. 1069–1078, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. CONAMA-PNUD, Estrategia y Plan de Acción para la Conservación de la Diversidad Biológica: Región de Valparaíso, CONAMA-PNUD, Valparaíso, Chile, 2005, http://www.sinia.cl/1292/articles-37028_pdf_valpo.pdf.
  14. G. J. Sotes, A. Urzúa, and B. Sebastián, “Chemistry of Pouteria splendens and its ecological situation,” Biochemical Systematics and Ecology, vol. 34, no. 4, pp. 338–340, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. P. B. Nuñez, Manipulación de semillas y producción de plantas de lúcumo silvestre (Pouteria splendens (A.DC.) O.K.) [Forest Engineering Professional Degree], Facultad de Ciencias Forestales, Universidad de Chile, Santiago, Chile, 2005.
  16. S. J. Phillips, R. P. Anderson, and R. E. Schapire, “Maximum entropy modeling of species geographic distributions,” Ecological Modelling, vol. 190, no. 3-4, pp. 231–259, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. J. Phillips and M. Dudík, “Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation,” Ecography, vol. 31, no. 2, pp. 161–175, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. R. G. Mateo, Á. M. Felicísimo, and J. Muñoz, “Species distributions models: a synthetic revision,” Revista Chilena de Historia Natural, vol. 84, no. 2, pp. 217–240, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Frankham, “Genetics and extinction,” Biological Conservation, vol. 126, no. 2, pp. 131–140, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Freeland, Molecular Ecology, John Wiley & Sons, Chichester, UK, 2005.
  21. P. Opdam and D. Wascher, “Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation,” Biological Conservation, vol. 117, no. 3, pp. 285–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Luebert and P. Pliscoff, Sinopsis Bioclimática y Vegetacional de Chile, Editorial Universitaria, Santiago, Chile, 2006.
  23. Dirección Meteorológica de Chile, “Climatología Regional,” 2001, http://164.77.222.61/climatologia/publicaciones/Climatologia_regional.pdf.
  24. R. Gajardo, La Vegetación Natural de Chile: Clasificación y Distribución Geográfica, Editorial Universitaria, Santiago, Chile, 1994.
  25. J. Elith, C. H. Graham, R. P. Anderson et al., “Novel methods improve prediction of species' distributions from occurrence data,” Ecography, vol. 29, no. 2, pp. 129–151, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. R. G. Pearson, C. J. Raxworthy, M. Nakamura, and A. Townsend Peterson, “Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar,” Journal of Biogeography, vol. 34, no. 1, pp. 102–117, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. R. J. Hijmans, S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis, “Very high resolution interpolated climate surfaces for global land areas,” International Journal of Climatology, vol. 25, no. 15, pp. 1965–1978, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Merow, M. J. Smith, and J. A. Silander, “A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter,” Ecography, vol. 36, no. 10, pp. 1058–1069, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. D. L. Warren, R. E. Glor, and M. Turelli, “ENMTools: a toolbox for comparative studies of environmental niche models,” Ecography, vol. 33, no. 3, pp. 607–611, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. D. L. Warren and S. N. Seifert, “Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria,” Ecological Applications, vol. 21, no. 2, pp. 335–342, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. M. M. Syfert, M. J. Smith, and D. A. Coomes, “The effects of sampling bias and model complexity on the predictive performance of maxent species distribution models,” PLoS ONE, vol. 8, no. 2, Article ID e55158, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Shcheglovitova and R. P. Anderson, “Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes,” Ecological Modelling, vol. 269, pp. 9–17, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Liu, P. M. Berry, T. P. Dawson, and R. G. Pearson, “Selecting thresholds of occurrence in the prediction of species distributions,” Ecography, vol. 28, no. 3, pp. 385–393, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Contreras-Medina, I. Luna-Vega, and C. A. Ríos-Muñoz, “Distribución de Taxus globosa (Taxaceae) en México: modelos ecológicos de nicho, efectos del cambio del uso de suelo y conservación,” Revista Chilena de Historia Natural, vol. 83, no. 3, pp. 421–433, 2010. View at Publisher · View at Google Scholar
  35. C. G. Vale, P. Tarroso, and J. C. Brito, “Predicting species distribution at range margins: testing the effects of study area extent, resolution and threshold selection in the Sahara-Sahel transition zone,” Diversity and Distributions, vol. 20, no. 1, pp. 20–33, 2014. View at Publisher · View at Google Scholar · View at Scopus
  36. C. D. Jones, J. K. Hughes, N. Bellouin et al., “The HadGEM2-ES implementation of CMIP5 centennial simulations,” Geoscientific Model Development, vol. 4, no. 3, pp. 543–570, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. R. H. Moss, J. A. Edmonds, K. A. Hibbard et al., “The next generation of scenarios for climate change research and assessment,” Nature, vol. 463, no. 7282, pp. 747–756, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. CONAF, Catastro de los Recursos Vegetacionales Nativos de Chile, Lom Ediciones, Santiago, Chile, 2011.
  39. M. Gupta, Y.-S. Chyi, J. Romero-Severson, and J. L. Owen, “Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats,” Theoretical and Applied Genetics, vol. 89, no. 7-8, pp. 998–1006, 1994. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Zietkiewicz, A. Rafalski, and D. Labuda, “Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification,” Genomics, vol. 20, no. 2, pp. 176–183, 1994. View at Publisher · View at Google Scholar · View at Scopus
  41. B. Carrasco, M. Garcés, P. Rojas et al., “The chilean strawberry [Fragaria chiloensis (L.) Duch.]: genetic diversity and structure,” Journal of the American Society for Horticultural Science, vol. 132, no. 4, pp. 501–506, 2007. View at Google Scholar · View at Scopus
  42. M. Nei, “Analysis of gene diversity in subdivided populations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 70, no. 12, pp. 3321–3323, 1973. View at Google Scholar · View at Scopus
  43. R. Peakall and P. E. Smouse, “GenALEx 6.5: genetic analysis in Excel. population genetic software for teaching and research—an update,” Bioinformatics, vol. 28, no. 19, pp. 2537–2539, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Excoffier, P. E. Smouse, and J. M. Quattro, “Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data,” Genetics, vol. 131, no. 2, pp. 479–491, 1992. View at Google Scholar · View at Scopus
  45. J. K. Pritchard, M. Stephens, and P. Donnelly, “Inference of population structure using multilocus genotype data,” Genetics, vol. 155, no. 2, pp. 945–959, 2000. View at Google Scholar · View at Scopus
  46. G. Evanno, S. Regnaut, and J. Goudet, “Detecting the number of clusters of individuals using the software structure: a simulation study,” Molecular Ecology, vol. 14, no. 8, pp. 2611–2620, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. International Union for Conservation of Nature, IUCN Red List Categories and Criteria: Version 3.1, International Union for Conservation of Nature (IUCN), Gland, Switzerland, 2001.
  48. M. L. McKinney, “High rates of extinction and threat in poorly studied taxa,” Conservation Biology, vol. 13, no. 6, pp. 1273–1281, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. M. N. Nũez, S. A. Solman, and M. F. Cabré, “Regional climate change experiments over southern South America. II: climate change scenarios in the late twenty-first century,” Climate Dynamics, vol. 32, no. 7, pp. 1081–1095, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. C. A. M. Silva, L. A. Simeoni, and D. Silveira, “Genus Pouteria: chemistry and biological activity,” Brazilian Journal of Pharmacognosy, vol. 19, no. 2, pp. 501–509, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Francois, “Eslabones de una cadena rota: el caso del bosque relicto de Santa Inés,” in Historia Natural del Parque Nacional Bosque de Fray Jorge, pp. 205–218, Corporación Nacional Forestal, Santiago, Chile, 2004. View at Google Scholar
  52. R. Garreaud, J. Barichivich, D. A. Christie, and A. Maldonado, “Interannual variability of the coastal fog at Fray Jorge relict forests in semiarid Chile,” Journal of Geophysical Research: Biogeosciences, vol. 113, Article ID G04011, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. I. N. Vogiatzakis, A. M. Mannion, and G. H. Griffiths, “Mediterranean ecosystems: problems and tools for conservation,” Progress in Physical Geography, vol. 30, no. 2, pp. 175–200, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. S. D. Cooper, P. S. Lake, S. Sabater, J. M. Melack, and J. L. Sabo, “The effects of land use changes on streams and rivers in mediterranean climates,” Hydrobiologia, vol. 719, no. 1, pp. 383–425, 2013. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Fahrig, “Effects of habitat fragmentation on biodiversity,” Annual Review of Ecology, Evolution, and Systematics, vol. 34, pp. 487–515, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. R. M. Ewers and R. K. Didham, “Confounding factors in the detection of species responses to habitat fragmentation,” Biological Reviews, vol. 81, no. 1, pp. 117–142, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. R. M. Ewers, S. Thorpe, and R. K. Didham, “Synergistic interactions between edge and area effects in a heavily fragmented landscape,” Ecology, vol. 88, no. 1, pp. 96–106, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. I. C. Fernández, N. S. Morales, L. A. Olivares, J. A. Salvatierra, M. U. Gómez, and G. R. Montenegro, Restauracion Ecológica para Ecosistemas Nativos Afectados por Incendios Forestales, Pontificia Universidad Católica de Chile, Santiago, Chile, 2010.
  59. R. Engler and A. Guisan, “MigClim: predicting plant distribution and dispersal in a changing climate,” Diversity and Distributions, vol. 15, no. 4, pp. 590–601, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. H. Nybom, “Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants,” Molecular Ecology, vol. 13, no. 5, pp. 1143–1155, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. S. A. Bekessy, T. R. Allnutt, A. C. Premoli et al., “Genetic variation in the vulnerable and endemic Monkey Puzzle tree, detected using RAPDs,” Heredity, vol. 88, no. 4, pp. 243–249, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. T. R. Allnutt, A. C. Newton, A. Premoli, and A. Lara, “Genetic variation in the threatened South American conifer Pilgerodendron uviferum (Cupressaceae), detected using RAPD markers,” Biological Conservation, vol. 114, no. 2, pp. 245–253, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. M. A. Gitzendanner and P. S. Soltis, “Patterns of genetic variation in rare and widespread plant congeners,” American Journal of Botany, vol. 87, no. 6, pp. 783–792, 2000. View at Publisher · View at Google Scholar · View at Scopus
  64. R. Aguilar, M. Quesada, L. Ashworth, Y. Herrerias-Diego, and J. Lobo, “Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches,” Molecular Ecology, vol. 17, no. 24, pp. 5177–5188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Luan, T.-Y. Chiang, and X. Gong, “High genetic diversity vs. low genetic differentiation in Nouelia insignis (Asteraceae), a narrowly distributed and endemic species in China, revealed by ISSR fingerprinting,” Annals of Botany, vol. 98, no. 3, pp. 583–589, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. M. A. Millar, D. J. Coates, and M. Byrne, “Extensive long-distance pollen dispersal and highly outcrossed mating in historically small and disjunct populations of Acacia woodmaniorum (Fabaceae), a rare banded iron formation endemic,” Annals of Botany, vol. 114, no. 5, pp. 961–971, 2014. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Jordan, “Pouteria species,” in Trees IV, Y. Bajaj, Ed., vol. 35 of Biotechnology in Agriculture and Forestry, pp. 291–307, Springer, Berlin, Germany, 1996. View at Publisher · View at Google Scholar
  68. Seremi Medio Ambiente Valparaíso, “Oficio N°33/2014,” Cámara de Diputados de Chile, Valparaiso, Chile, 2014, http://www.camara.cl/pdf.aspx?prmTIPO=DOCUMENTOCOMISION&prmID=20881.
  69. P. Cardoso, P. A. V. Borges, K. A. Triantis, M. A. Ferrández, and J. L. Martín, “Adapting the IUCN Red List criteria for invertebrates,” Biological Conservation, vol. 144, no. 10, pp. 2432–2440, 2011. View at Publisher · View at Google Scholar · View at Scopus