Table of Contents Author Guidelines Submit a Manuscript
International Journal of Engineering Mathematics
Volume 2014 (2014), Article ID 618591, 8 pages
http://dx.doi.org/10.1155/2014/618591
Research Article

Developing Buoyancy Driven Flow of a Nanofluid in a Vertical Channel Subject to Heat Flux

1Department of Mathematics & Statistics, College of Science, Sultan Qaboos University, Al Khod, 123 Muscat, Oman
2Department of Mathematics, Banaras Hindu University, Varanasi 221005, India
3Department of Applied Mathematics, School of Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India

Received 24 August 2013; Accepted 17 November 2013; Published 2 February 2014

Academic Editor: Alberto Cardona

Copyright © 2014 Nirmal C. Sacheti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Gebhart, Y. Jaluria, R. L. Mahajan, and B. Sammakia, Buoyancy-Induced Flows and Transport, Hemisphere, Cambridge, UK, 1988.
  2. D. J. Nelson and B. D. Wood, “Combined heat and mass transfer natural convection between vertical parallel plates,” International Journal of Heat and Mass Transfer, vol. 32, no. 9, pp. 1779–1787, 1989. View at Google Scholar · View at Scopus
  3. A. K. Singh, H. R. Gholami, and V. M. Soundalgekar, “Transient free convection flow between two vertical parallel plates,” Heat and Mass Transfer, vol. 31, no. 5, pp. 329–331, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Masoda, A. Ebata, K. Teramae, and N. Hishinuma, “Alternation of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles,” Netsu Bussei, vol. 7, no. 4, pp. 227–223, 1993. View at Publisher · View at Google Scholar
  5. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” in Developments and Applications of Non-Newtonian Flows: FED 231/MD 66, D. A. Siginer and H. P. Wang, Eds., pp. 99–105, ASME, New York, NY, USA, 1995. View at Google Scholar
  6. J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Applied Physics Letters, vol. 78, no. 6, pp. 718–720, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids,” Journal of Heat Transfer, vol. 125, no. 4, pp. 567–574, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Buongiorno, “Convective transport in nanofluids,” Journal of Heat Transfer, vol. 128, no. 3, pp. 240–250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Khanafer, K. Vafai, and M. Lightstone, “Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids,” International Journal of Heat and Mass Transfer, vol. 46, no. 19, pp. 3639–3653, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Putra, W. Roetzel, and S. K. Das, “Natural convection of nano-fluids,” Heat and Mass Transfer, vol. 39, no. 8-9, pp. 775–784, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Trisaksri and S. Wongwises, “Critical review of heat transfer characteristics of nanofluids,” Renewable and Sustainable Energy Reviews, vol. 11, no. 3, pp. 512–523, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. X.-Q. Wang and A. S. Mujumdar, “Heat transfer characteristics of nanofluids: a review,” International Journal of Thermal Sciences, vol. 46, no. 1, pp. 1–19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Y. Tzou, “Instability of nanofluids in natural convection,” Journal of Heat Transfer, vol. 130, no. 7, Article ID 072401, 9 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. D. A. Nield and A. V. Kuznetsov, “The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid,” International Journal of Heat and Mass Transfer, vol. 52, no. 25-26, pp. 5792–5795, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. D. A. Nield and A. V. Kuznetsov, “Thermal instability in a porous medium layer saturated by a nanofluid,” International Journal of Heat and Mass Transfer, vol. 52, no. 25-26, pp. 5796–5801, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Abu-Nada and A. J. Chamkha, “Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO-EG—water nanofluid,” International Journal of Thermal Sciences, vol. 49, no. 12, pp. 2339–2352, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Chamkha, R. S. R. Gorla, and K. Ghodeswar, “Non-similar solution for natural convective boundary layer flow over a sphere embedded in a porous medium saturated with a nanofluid,” Transport in Porous Media, vol. 86, no. 1, pp. 13–22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. R. S. R. Gorla and A. Chamkha, “Natural convective boundary layer flow over a nonisothermal vertical plate embedded in a porous medium saturated with a nanofluid,” Nanoscale and Microscale Thermophysical Engineering, vol. 15, no. 2, pp. 81–94, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. A. J. Chamkha, S. Abbasbandy, A. M. Rashad, and K. Vajravelu, “Radiation effects on mixed convection over a wedge embedded in a porous medium filled with a nanofluid,” Transport in Porous Media, vol. 91, no. 1, pp. 261–279, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Haddad, E. Abu-Nada, H. F. Oztop, and A. Mataoui, “Natural convection in nanofluids: are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement?” International Journal of Thermal Sciences, vol. 57, pp. 152–162, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. N. C. Sacheti, P. Chandran, A. K. Singh, and B. S. Bhadauria, “Transient free convective flow of a nanofluid in a vertical channel,” International Journal of Energy & Technology, vol. 4, pp. 1–7, 2012. View at Google Scholar