Table of Contents
International Journal of Inorganic Chemistry
Volume 2013 (2013), Article ID 436275, 10 pages
http://dx.doi.org/10.1155/2013/436275
Research Article

Studies on Synthesis and Spectral Characterization of Some Transition Metal Complexes of Azo-Azomethine Derivative of Diaminomaleonitrile

1Department of Chemistry, Fatima Michael College of Engineering and Technology, Madurai 625 020, India
2Department of Chemistry, The American College, Madurai 625 002, India
3Department of Chemistry, Thiagarajar College, Madurai 625 009, India

Received 30 September 2012; Accepted 2 December 2012

Academic Editor: Wei-Yin Sun

Copyright © 2013 C. Anitha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. J. Boucher and C. G. Coe, “Manganese-Schiff base complexes. VI. Synthesis and spectroscopy of aquo[N,N-ethylenebis(4-sec-butylsalicylaldiminato)]manganese(III) perchlorate and .mu.-dioxo-bis[N,N-ethylenebis(4-sec-butylsalicylaldiminato)]dimanganese(IV) and related N,N-trimethylenebis(4-sec-butylsalicylaldimine) complexes,” Inorganic Chemistry, vol. 14, no. 6, pp. 1289–1294, 1975. View at Google Scholar
  2. A. R. Oki and D. J. Hodgson, “Synthesis, characterization and catalytic properties of manganese(III) Schiff-Base complexes,” Inorganica Chimica Acta, vol. 170, pp. 65–73, 1990. View at Google Scholar
  3. P. Mukherjee, M. G. B. Drew, M. Estrader, C. Diaz, and A. Ghosh, “Influence of counter anions on the structures and magnetic properties of trinuclear Cu(II) complexes containing a μ3-OH core and Schiff base ligands,” Inorganica Chimica Acta, vol. 361, no. 1, pp. 161–172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Ortiz and S. M. Park, “Electrochemical and spectroelectrochemical studies of cobalt salen and salophen as oxygen reduction catalysts,” Bulletin of the Korean Chemical Society, vol. 21, no. 4, pp. 405–411, 2000. View at Google Scholar · View at Scopus
  5. E. Ispir, M. Kurtoglu, F. Purtas, and S. Serin, “Synthesis and antimicrobial activity of new schiff bases having the SiOR group (R = CH (3) or CH2CH3), and their transition metal complexes,” Transition Metal Chemistry, vol. 30, pp. 1042–1047, 2005. View at Google Scholar
  6. S. Sreedaran, K. S. Bharathi, A. K. Rahiman et al., “Synthesis, electrochemical, catalytic and antimicrobial activities of novel unsymmetrical macrocyclic dicompartmental binuclear nickel(II) complexes,” Polyhedron, vol. 27, no. 7, pp. 1867–1874, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Al-Azmi, A. Z. A. Elassar, and B. L. Booth, “The chemistry of diaminomaleonitrile and its utility in heterocyclic synthesis,” Tetrahedron, vol. 59, no. 16, pp. 2749–2763, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Shirai, M. Matsuoka, and K. Fukunishi, “New syntheses and solid state fluorescence of azomethine dyes derived from diaminomaleonitrile and 2,5-diamino-3,6-dicyanopyrazine,” Dyes and Pigments, vol. 47, no. 1-2, pp. 107–115, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. E. S. Aazam, M. M. Ghoneim, and M. A. El-Attar, “Synthesis, characterization, electrochemical behavior, and biological activity of bisazomethine dye derived from 2,3-diaminomaleonitrile and 2-hydroxy-1-naphthaldehyde and its zinc complex,” Journal of Coordination Chemistry, vol. 64, no. 14, pp. 2506–2520, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. V. V. Nesterov, M. Y. Antipin, V. N. Nesterov, B. G. Penn, D. O. Frazier, and T. V. Timofeeva, “Thermally stable imines as new potential nonlinear optical materials,” Crystal Growth and Design, vol. 4, no. 3, pp. 521–531, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. S. H. Kim, S. H. Yoon, S. H. Kim, and E. M. Han, “Red electroluminescent azomethine dyes derived from diaminomaleonitrile,” Dyes and Pigments, vol. 64, no. 1, pp. 45–48, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. J. Maclachlan, M. K. Park, and L. K. Thompson, “Coordination compounds of Schiff-Base ligands derived from diaminomaleonitrile (DMN): mononuclear, dinuclear, and macrocyclic derivatives,” Inorganic Chemistry, vol. 35, pp. 5492–5499, 2004. View at Google Scholar
  13. V. Arun, P. P. Robinson, S. Manju et al., “A novel fluorescent bisazomethine dye derived from 3-hydroxyquinoxaline-2-carboxaldehyde and 2,3-diaminomaleonitrile,” Dyes and Pigments, vol. 82, no. 3, pp. 268–275, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Rajasekar, S. Sreedaran, R. Prabu et al., “Synthesis, characterization, and antimicrobial activities of nickel(II) and copper(II) Schiff-base complexes,” Journal of Coordination Chemistry, vol. 63, no. 1, pp. 136–146, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Badea, R. Olar, E. Cristurean et al., “Thermal stability study of some azo-derivatives and their complexes—part 2. New azo-derivative pigments and their Cu(II) complexes,” Journal of Thermal Analysis and Calorimetry, vol. 77, no. 3, pp. 815–824, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Geng, D. Gu, and F. Gan, “Application of novel azo metal thin film in optical recording,” Optical Materials, vol. 27, no. 2, pp. 193–197, 2004. View at Google Scholar
  17. H. Kocaokutgen, M. Gür, M. S. Soylu, and P. Lönnecke, “Spectroscopic, thermal and crystal structure properties of novel (E)-2,6-dimethyl-4-(4-tert-butylphenyldiazenyl)phenyl acrylate dye,” Dyes and Pigments, vol. 67, no. 2, pp. 99–103, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Ren, R. Wang, K. Komastu, and P. B. Krause, Journal of Medicinal Chemistry, vol. 45, pp. 410–419, 2002.
  19. M. Tofazzal, H. Tarafder, M. A. Ali et al., “Coordination chemistry and biological activity of two tridentate ONS and NNS Schiff bases derived from S-benzyldithiocarbazate,” Transition Metal Chemistry, vol. 25, no. 3, pp. 295–298, 2000. View at Google Scholar · View at Scopus
  20. H. B. Nishihara, “Multi-Mode molecular switching properties and functions of azo-conjugated metal complexes,” Bulletin of the Chemical Society of Japan, vol. 77, pp. 407–412, 2004. View at Google Scholar
  21. A. Weissenburg, E. S. Proskaur, J. A. Riddick, and E. E. Toope, “Organic solvents,” in Techniques of Organic Chemistry, Interscience, New York, NY, USA, 3rd edition, 1995. View at Google Scholar
  22. B. S. Furniss, A. J. Hannaferd, and V. Rogers, Vogel’s Textbook of Practical Organic Chemistry, Longman, New York, NY, USA, 4th edition, 1981.
  23. N. M. EI-Metwally, I. M. Gabr, and A. M. Shallaby, “Synthesis and spectroscopic characterization of new mono- and binuclear complexes of some NH(1) thiosemicarbazides,” Journal of Coordination Chemistry, vol. 58, pp. 1154–1162, 2005. View at Google Scholar
  24. R. C. Maurya and S. Rajput, “Oxovanadium(IV) complexes of bioinorganic and medicinal relevance: synthesis, characterization and 3D molecular modeling and analysis of some oxovanadium(IV) complexes involving the O, N-donor environment of pyrazolone-based sulfa drug Schiff bases,” Journal of Molecular Structure, vol. 687, p. 35, 2004. View at Google Scholar
  25. D. M. Johnson, S. E. Reybuck, R. G. Lawton, and P. G. Rasmussen, “Condensation of DAMN with conjugated aldehydes and polymerizations of the corresponding imines,” Macromolecules, vol. 38, no. 9, pp. 3615–3621, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Rivera, J. Ríos-Motta, and F. León, “Revisiting the reaction between diaminomaleonitrile and aromatic aldehydes: a green chemistry approach,” Molecules, vol. 11, no. 11, pp. 858–866, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Tuncel and S. Serin, “Synthesis and characterization of new azo-linked schiff bases and their cobalt(II), copper(II) and nickel(II) complexes,” Transition Metal Chemistry, vol. 31, pp. 805–812, 2006. View at Google Scholar
  28. N. Ramana, L. Mitub, A. Sakthivela, and M. S. S. Pandia, “Studies on DNA cleavage and antimicrobial screening of transition metal complexes of 4-aminoantipyrine derivatives of N2O2 type,” Journal of the Iranian Chemical Society, vol. 6, pp. 738–748, 2009. View at Google Scholar
  29. M. Shebl, S. M. E. Khalil, S. A. Ahmed, and H. A. A. Medien, “Synthesis, spectroscopic characterization and antimicrobial activity of mono-, bi- and tri-nuclear metal complexes of a new Schiff base ligand,” Journal of Molecular Structure, vol. 980, no. 1–3, pp. 39–50, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. A. A. Nejo, G. A. Kolawole, and A. O. Nejo, “Synthesis, characterization, antibacterial, and thermal studies of unsymmetrical Schiff-base complexes of cobalt(II),” Journal of Coordination Chemistry, vol. 63, no. 24, pp. 4398–4410, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Rosu, M. Negoiu, S. Pasculescu, E. Pahontu, D. Poirier, and A. Gulea, “Metal-based biologically active agents: synthesis, characterization, antibacterial and antileukemia activity evaluation of Cu(II), V(IV) and Ni(II) complexes with antipyrine-derived compounds,” European Journal of Medicinal Chemistry, vol. 45, no. 2, pp. 774–781, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. N. H. Al-Shaalan, “Synthesis, characterization and biological activities of Cu(II), Co(II), Mn(II), Fe(II), and UO2(VI) complexes with a new Schiff Base hydrazone: o-hydroxyacetophenone-7-chloro-4-quinoline hydrazone,” Molecules, vol. 16, pp. 8629–8645, 2011. View at Google Scholar
  33. J. R. Anacona, T. Martell, and I. Sanchez, “Metal complexes of a new ligand derived from 2,3-quinoxalinedithiol and 2,6-bis(bromomethyl)pyridine,” Journal of the Chilean Chemical Society, vol. 50, no. 1, pp. 375–378, 2005. View at Google Scholar
  34. R. Kannappan, R. Mahalakshmy, T. M. Rajendiran, R. Venkatesan, and P. Sambasiva Rao, “Magnetic, catalytic, EPR and electrochemical studies on binuclear copper(II) complexes derived from 3,4-disubstituted phenol,” Proceedings of the Indian Academy of Sciences, vol. 115, no. 1, pp. 1–14, 2003. View at Google Scholar · View at Scopus
  35. A. B. P. Lever, Inorganic Electronic Spectroscopy, Elsevier, New York, NY, USA, 2nd edition, 1985.
  36. D. Azarifar and M. Shaebanzadeh, “Synthesis and characterization of new 3,5-dinaphthyl substituted 2-pyrazolines and study of their antimicrobial activity,” Molecules, vol. 7, no. 12, pp. 885–895, 2002. View at Google Scholar · View at Scopus
  37. C. D. Sheela, C. Anitha, P. Tharmaraj, and D. Kodimunthri, “Synthesis, spectral characterization, and antimicrobial studies of metal complexes of the schiff base derived from [4-amino-N-guanylbenzene sulfonamide] and salicylaldehyde,” Journal of Coordination Chemistry, vol. 63, no. 5, pp. 884–893, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Belaid, A. Landreau, S. Djebbar, O. Benali-Baitich, G. Bouet, and J. P. Bouchara, “Synthesis, characterization and antifungal activity of a series of manganese(II) and copper(II) complexes with ligands derived from reduced N,N-O-phenylenebis(salicylideneimine),” Journal of Inorganic Biochemistry, vol. 102, no. 1, pp. 63–69, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Dharamaraj, P. Viswanathamurthi, and K. Natarajan, “Ruthenium(II) complexes containing bidentate Schiff bases and their antifungal activity,” Transition Metal Chemistry, vol. 26, pp. 105–109, 2001. View at Google Scholar
  40. Z. N. Tisseh, M. Dabiri, and M. Nobahar, “Catalyst-free synthesis of N-rich heterocycles via multi-component reactions,” Tetrahedron, vol. 68, pp. 3351–3356, 2012. View at Google Scholar
  41. Z. H. Chohan, K. M. Khan, and C. T. Supuran, “Synthesis of antibacterial and antifungal cobalt(II), copper(II), nickel(II) and zinc(II) complexes with bis-(1,1-disubstituted ferrocenyl)thiocarbohydrazone and bis-(1,1-disubstituted ferrocenyl)carbohydrazone,” Applied Organometallic Chemistry, vol. 18, pp. 305–310, 2004. View at Google Scholar
  42. A. Majumder, G. M. Rosair, A. Mallick, N. Chattopadhyay, and S. Mitra, “Synthesis, structures and fluorescence of nickel, zinc and cadmium complexes with the N,N,O-tridentate Schiff base N-2-pyridylmethylidene-2-hydroxy-phenylamine,” Polyhedron, vol. 25, no. 8, pp. 1753–1762, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Das, B. G. Chand, K. K. Sarker, J. Dinda, and C. Sinha, “Zn(II)-azide complexes of diimine and azoimine functions: synthesis, spectra and X-ray structures,” Polyhedron, vol. 25, no. 11, pp. 2333–2340, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. X. Chen, J. Zhang, H. Zhang et al., “Preparation and nonlinear optical studies of a novel thermal stable polymer containing azo chromophores in the side chain,” Dyes and Pigments, vol. 77, no. 1, pp. 223–228, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Khanmohammadi and M. Darvishpour, “New azo ligands containing azomethine groups in the pyridazine-based chain: synthesis and characterization,” Dyes and Pigments, vol. 81, no. 3, pp. 167–173, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” Journal of Applied Physics, vol. 39, no. 8, pp. 3798–3813, 1968. View at Publisher · View at Google Scholar · View at Scopus