Table of Contents
International Journal of Inorganic Chemistry
Volume 2013 (2013), Article ID 549805, 6 pages
Research Article

Synthesis, Characterization, and Biological Evaluation of Some 3d-Metal Complexes of Schiff Base Derived from Xipamide Drug

1Department of Chemistry, Sadhu Vaswani College, Bairagarh, Bhopal 462030, India
2Department of Chemistry, Career College, Bhopal 462023, India
3Department of Chemistry, Sarojini Naidu Govt. Girls Post Graduate (Autonomous) College, Shivaji Nagar, Bhopal 462003, India

Received 31 August 2012; Revised 25 October 2012; Accepted 7 November 2012

Academic Editor: Alfonso Castiñeiras

Copyright © 2013 Suman Malik et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The present paper deals with the synthesis and characterization of metal complexes of Schiff base derived from xipamide, a diuretic drug. The bidentate ligand is derived from the inserted condensation of 5-aminosulfonyl-4-chloro-N-2,6-dimethyl phenyl-2-hydroxybenzamide (Xipamide) with salicylaldehyde in a 1 : 1 molar ratio. Using this bidentate ligand, complexes of Hg(II), Zn(II), and VO(IV) with general formula ML2 have been synthesized. The synthesized complexes were characterized by several techniques using molar conductance, elemental analysis, magnetic susceptibility, FT-IR spectroscopy, electronic spectra, mass spectra, and particle size analysis. The elemental analysis data suggest the stoichiometry to be 1 : 2 [M : L]. All the complexes are nonelectrolytic in nature as suggested by molar conductance measurements. Infrared spectral data indicate the coordination between the ligand and the central metal ion through deprotonated phenolic oxygen and azomethine nitrogen atoms. Spectral studies suggest tetrahedral geometry for Hg(II), Zn(II) complexes, and square pyramidal geometry for VO(IV) complex. The pure drug, synthesized ligand, and metal complexes were screened for their antifungal activities against Aspergillus niger and Aspergillus flavus. The ligand and its Hg(II) and VO(IV) complexes were screened for their diuretic activity too.