Table of Contents
International Journal of Inorganic Chemistry
Volume 2013, Article ID 617837, 8 pages
http://dx.doi.org/10.1155/2013/617837
Research Article

Synthesis, Electrochemical, Spectroscopic, Antimicrobial, and Superoxide Dismutase Activity of Nickel (II) Complexes with Bidentate Schiff Bases

1Department of Chemistry, A.P.S. University, Rewa 486003, India
2Department of Chemistry, Govt. Vivekanand P.G. Collage Maihar, Satna 486755, India
3Department of Chemistry, National Institute of Technology, Patna 800005, India

Received 19 August 2013; Revised 1 October 2013; Accepted 3 October 2013

Academic Editor: Rabindranath Mukherjee

Copyright © 2013 R. N. Patel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. G. B. Drew, S. M. Nelson, and J. Reedijk, “Imidazolate bridged binuclear copper(II) complexes of macrocyclic ligands: electron spin resonance spectra and magnetic susceptibility studies,” Inorganica Chimica Acta, vol. 64, pp. L189–L191, 1982. View at Publisher · View at Google Scholar
  2. P. K. Caughlin and S. J. Lippard, “Magnetic, ESR, electrochemical, and potentiometric titration studies of the imidazolate-bridged dicopper(II) ion in a binucleating macrocycle,” Inorganic Chemistry, vol. 23, no. 10, pp. 1446–1451, 1984. View at Publisher · View at Google Scholar
  3. C. A. Salata, M. T. Youinon, and C. J. Burrows, “(Template)2 synthesis of a dinucleating macrocyclic ligand and crystal structure of its dicopper(II) imidazolate complex,” Journal of the American Chemical Society, vol. 111, no. 26, pp. 9278–9279, 1989. View at Publisher · View at Google Scholar
  4. H.-D. Youn, E.-J. Kim, J.-H. Roe, Y. C. Hah, and S.-O. Kang, “A novel nickel-containing superoxide dismutase from Streptomyces spp,” Biochemical Journal, vol. 318, no. 3, pp. 889–896, 1996. View at Google Scholar · View at Scopus
  5. J. M. McCord, “Superoxide dismutase in aging and disease: an overview,” Methods in Enzymology, vol. 349, pp. 331–341, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. L. W. Oberley and G. R. Buettner, “Role of superoxide dismutase in cancer: a review,” Cancer Research, vol. 39, no. 4, pp. 1141–1149, 1979. View at Google Scholar · View at Scopus
  7. W. Bayer, J. Imlay, and I. Fridovich, “Superoxide dismutases,” Progress in Nucleic Acid Research and Molecular Biology, vol. 40, pp. 221–253, 1991. View at Google Scholar
  8. I. Fridovich, “Superoxide radical and superoxide dismutases,” Annual Review of Biochemistry, vol. 64, pp. 97–112, 1995. View at Publisher · View at Google Scholar
  9. A. F. Miller and D. L. Sorkin, “Superoxide dismutases: a molecular perspective,” Comments on Molecular and Cellular Biophysics, vol. 9, no. 1, pp. 1–48, 1997. View at Google Scholar
  10. V. P. Singh, A. Katiyar, and S. Singh, “Synthesis, physico-chemical investigations and biological studies on Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes with p-amino acetophenone isonicotinoyl hydrazone,” Journal of Coordination Chemistry, vol. 62, no. 8, pp. 1336–1346, 2009. View at Publisher · View at Google Scholar
  11. K. K. Narang and V. P. Singh, “Synthesis and characterization of cobalt(II), nickel(II), copper(II) and zinc(II) complexes with acetylacetone bis-benzoylhydrazone and acetylacetone bis-isonicotinoylhydrazone,” Transition Metal Chemistry, vol. 18, no. 3, pp. 287–290, 1993. View at Publisher · View at Google Scholar
  12. Y. Ikawa, T. Nagata, and K. Maruyama, “Synthesis and electrochemical properties of dinuclear manganese(II) complexes with octadentate Schiff-base macrocycles. Fine tuning of the redox behavior,” Chemistry Letters, vol. 22, no. 6, pp. 1049–1052, 1993. View at Publisher · View at Google Scholar
  13. T. Aono, H. Wada, Y. Aratake, N. Matsumoto, H. Okawa, and Y. Matsuda, “Crystal structure and spin-doublet electron spin resonance of a magnetically coupled di(m-phenoxo)copper(II)nickel(II) complex,” Journal of the Chemical Society, Dalton Transactions, no. 1, pp. 25–29, 1996. View at Publisher · View at Google Scholar
  14. B. Murukan and K. Mohanan, “Synthesis, characterization, electrochemical properties and antibacterial activity of some transiton metal complexes with [(2-hydroxy-1-naphthaldehyde)-3- isatin]-bishydrazone,” Transition Metal Chemistry, vol. 31, no. 4, pp. 441–446, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. M. El-Behery and H. El-Twigry, “Synthesis, magnetic, spectral, and antimicrobial studies of Cu(II), Ni(II) Co(II), Fe(III), and UO2(II) complexes of a new Schiff base hydrazone derived from 7-chloro-4-hydrazinoquinoline,” Spectrochimica Acta A, vol. 66, no. 1, pp. 28–36, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. R. N. Patel, K. K. Shukla, A. Singh, M. Choudhry, and D. K. Patel, “Synthesis, characterization, crystal structures, and superoxide dismutase activity of copper(II) octahedral complexes containing tri- and monodentate ligands,” Journal of Coordination Chemistry, vol. 63, no. 4, pp. 586–599, 2010. View at Publisher · View at Google Scholar
  17. R. N. Patel, M. K. Kesharwani, A. Singh, D. K. Patel, and M. Choudhary, “Syntheses, structures and electrochemical properties of complexes of nickel(II) with triethylenetetramine and bidentate nitrogen donor co-ligands,” Transition Metal Chemistry, vol. 33, no. 6, pp. 733–738, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. R. N. Patel, K. K. Shukla, A. Singh et al., “Spectral, structural, and superoxide dismutase activity of some octahedral nickel(II) complexes with tri-tetradentate ligands,” Journal of Coordination Chemistry, vol. 63, no. 20, pp. 3648–3661, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. R. G. Bhirud and T. S. Shrivastava, “Synthesis, characterization and superoxide dismutase activity of some ternary copper(II) dipeptide-2,2′-bipyridine, 1,10-phenanthroline and 2,9-dimethyl-1,10-phenanthroline complexes,” Inorganica Chimica Acta, vol. 179, no. 1, pp. 125–131, 1991. View at Publisher · View at Google Scholar
  20. R. N. Patel, S. P. Rawat, M. Choudhary et al., “Synthesis, structure and biological activities of mixed ligand copper(II) and nickel(II) complexes of N′-(1E)-[(5-bromo-2-hydroxyphenyl)methylidene]benzoylhydrazone,” Inorganica Chimica Acta, vol. 392, pp. 283–291, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Tabushi, Y. Taniguchi, and H. Kato, “Preparation of C-alkylated macrocyclic polyamines,” Tetrahedron Letters, vol. 18, no. 12, pp. 1049–1052, 1977. View at Google Scholar · View at Scopus
  22. W. J. Geary, “The use of conductivity measurements in organic solvents for the characterisation of coordination compounds,” Coordination Chemistry Reviews, vol. 7, no. 1, pp. 81–122, 1971. View at Publisher · View at Google Scholar
  23. R. N. Patel, N. Singh, K. K. Shukla et al., “X-ray, spectral and biological (antimicrobial and superoxide dismutase) studies of oxalato bridged Cu(II)-Ni(II) and Cu(II)-Zn(II) complexes with pentamethyldiethylenetriamine as capping ligand,” Journal of Inorganic Biochemistry, vol. 95, no. 2, pp. 231–237, 2004. View at Publisher · View at Google Scholar
  24. R. N. Patel, K. K. Shukla, A. Singh et al., “Spectroscopic, structural and magnetic studies of nickel(II) complexes with tetra- and pentadentate ligands,” Transition Metal Chemistry, vol. 34, no. 2, pp. 239–245, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. R. N. Patel, M. Choudhary, K. K. Shukla, N. Singh, and A. Singh, “Synthesis and characterization of some mixed ligand copper(II) complexes containing ONN donor Schiff base and bidentate ligands,” Journal of the Indian Chemical Society, vol. 88, no. 6, pp. 789–794, 2011. View at Google Scholar · View at Scopus
  26. Á. García-Raso, J. J. Fiol, B. Adrover et al., “Reactivity of copper(II) peptide complexes with bioligands (benzimidazole and creatinine),” Polyhedron, vol. 22, no. 25-26, pp. 3255–3264, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. P. F. Rapheal, E. Manoj, and M. R. P. Kurup, “Copper(II) complexes of N(4)-substituted thiosemicarbazones derived from pyridine-2-carbaldehyde: crystal structure of a binuclear complex,” Polyhedron, vol. 26, no. 4, pp. 818–828, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. R. N. Patel, N. Singh, and V. L. N. Gundla, “Synthesis, characterization and superoxide dismutase activity of some octahedral nickel(II) complexes,” Polyhedron, vol. 26, no. 4, pp. 757–762, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. R. N. Patel, N. Singh, and V. L. N. Gundla, “Synthesis, structure and properties of ternary copper(II) complexes of ONO donor Schiff base, imidazole, 2,2′-bipyridine and 1,10-phenanthroline,” Polyhedron, vol. 25, no. 17, pp. 3312–3318, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. R. N. Patel, “Synthesis, characterization, and superoxide dismutase activity of two new copper(II) complexes of benzoylpyridine 4-phenylsemicarbazone,” Journal of Coordination Chemistry, vol. 63, no. 7, pp. 1207–1219, 2010. View at Publisher · View at Google Scholar
  31. R. N. Patel, “Structural, magnetic and spectroscopic characterization of two unusual end-on bis(μ-acetato/μ-nitrato) bridged copper(II) complexes with N′-[phenyl(pyridin-2-yl)methylidene]furan-2-carbohydrazide and (2E,4Z)-N,2-dimethylhepta-2,4,6-trienamide-1-phenyl-1-pyridin-2-ylmethanimine (1:1) as capping ligands,” Inorganica Chimica Acta, vol. 363, pp. 3838–3846, 2010. View at Publisher · View at Google Scholar
  32. R. N. Patel, N. Singh, K. K. Shukla et al., “Magnetic, spectroscopic, structural and biological properties of mixed-ligand complexes of copper(II) with N,N,N′,N′′,N′′-pentamethyldiethylenetriamine and polypyridine ligands,” Inorganica Chimica Acta, vol. 357, no. 9, pp. 2469–2476, 2004. View at Publisher · View at Google Scholar
  33. M. T. H. Tarafder, K.-B. Chew, K. A. Crouse, A. M. Ali, B. M. Yamin, and H.-K. Fun, “Synthesis and characterization of Cu(II), Ni(II) and Zn(II) metal complexes of bidentate NS isomeric Schiff bases derived from S-methyldithiocarbazate (SMDTC): bioactivity of the bidentate NS isomeric Schiff bases, some of their Cu(II), Ni(II) and Zn(II) complexes and the X-ray structure of the bis[S-methyl-β-N-(2-furyl-methyl)methylenedithiocarbazato]zinc(II) complex,” Polyhedron, vol. 21, no. 27-28, pp. 2683–2690, 2002. View at Google Scholar · View at Scopus
  34. R. N. Patel, K. K. Shukla, A. Singh, D. K. Patel, and V. P. Sondhiya, “Structural, spectroscopic, and biological studies of N,O donor Schiff base copper(II) complexes,” Journal of Coordination Chemistry, vol. 64, pp. 902–919, 2011. View at Publisher · View at Google Scholar
  35. B. G. Tweedy, “Plant extracts with metal ions as potential antimicrobial agents,” Phytopathology, vol. 55, pp. 910–914, 1964. View at Google Scholar