Table of Contents
International Journal of Inorganic Chemistry
Volume 2013, Article ID 716819, 5 pages
http://dx.doi.org/10.1155/2013/716819
Research Article

Effect of Ni Doping on the Growth and Properties of Mn-L-Histidine Hydrochloride Monohydrate Crystals

1Department of Chemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 510, India
2Department of Chemistry, Vikrama Simhapuri University, Nellore 524 001, India

Received 13 April 2013; Accepted 30 July 2013

Academic Editor: W. T. Wong

Copyright © 2013 J. Sai Chandra et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Lai, K. J. Roberts, L. H. Avanci, L. P. Cardoso, and J. M. Sasaki, “Habit modification of nearly perfect single crystals of potassium dihydrogen phosphate (KDP) by trivalent manganese ions studied using synchrotron radiation X-ray multiple diffraction in Renninger scanning mode,” Journal of Applied Crystallography, vol. 36, no. 5, pp. 1230–1235, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. D. A. H. Cunningham, R. B. Hammond, X. Lai, and K. J. Roberts, “Understanding the habit modification of ammonium dihydrogen phosphate by chromium ions using a dopant-induced charge compensation model,” Chemistry of Materials, vol. 7, no. 9, pp. 1690–1695, 1995. View at Google Scholar · View at Scopus
  3. X. Lai, K. J. Roberts, M. J. Bedzyk, P. F. Lyman, L. P. Cardoso, and J. M. Sasaki, “Structure of habit-modifying trivalent transition metal cations (Mn3+, Cr3+) in nearly perfect single crystals of potassium dihydrogen phosphate as examined by X-ray standing waves, X-ray absorption spectroscopy, and molecular modeling,” Chemistry of Materials, vol. 17, no. 16, pp. 4053–4061, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Joseph, V. Mathew, and K. E. Abraham, “Bulg. electro-optical, optical and structural properties of Mn doped potassium chloride crystals prepared by a mini melt growth setup,” Journal of Physics, vol. 35, pp. 198–212, 2008. View at Google Scholar
  5. Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” Journal of Physics Condensed Matter, vol. 16, no. 25, pp. R829–R858, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. V. Volkenstein, Molecular Biophysics, Academic Press, NewYork, NY, USA, 1977.
  7. J. L. B. Faria, F. M. Almeida, O. Pilla et al., “Raman spectra of L-histidine hydrochloride monohydrate crystal,” Journal of Raman Spectroscopy, vol. 35, no. 3, pp. 242–248, 2004. View at Google Scholar · View at Scopus
  8. S. J. Lippard and J. M. Berg, Principles of Bioinorganic Chemistry, University Science Books, Mill Valley, Calif, USA, 1994.
  9. H. O. Marcy, M. J. Rosker, L. F. Warren et al., “L-histidine tetrafluoroborate: a solution-grown semiorganic crystal for nonlinear frequency conversion,” Optics Letters, vol. 20, no. 3, pp. 252–254, 1995. View at Google Scholar · View at Scopus
  10. R. Kripal and S. Pandey, “Single crystal EPR and optical absorption study of Cr3+ doped l-histidine hydrochloride monohydrate,” Journal of Physics and Chemistry of Solids, vol. 72, no. 2, pp. 67–72, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. P. C. Thomas, S. Aruna, J. Madhavan et al., “Growth and thermal studies of non-linear optical L-argininium diiodate L-argininium dinitrate and L-argininium hydrochloride bromide single crystals,” Indian Journal of Pure and Applied Physics, vol. 45, no. 7, pp. 591–595, 2007. View at Google Scholar · View at Scopus
  12. M. J. Colaneri and J. Peisach, “An electron spin-echo envelope modulation study of Cu(II)-doped single crystals of L-histidine hydrochloride monohydrate,” Journal of the American Chemical Society, vol. 114, no. 13, pp. 5335–5341, 1992. View at Publisher · View at Google Scholar · View at Scopus
  13. C. M. R. Remédios, W. Paraguassu, J. A. Lima Jr. et al., “Effect of Ni(II) doping on the structure of L-histidine hydrochloride monohydrate crystals,” Journal of Physics Condensed Matter, vol. 20, no. 27, Article ID 275209, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. P. E. Hoggard, “L-histidine complexes of chromium(III),” Inorganic Chemistry, vol. 20, no. 2, pp. 415–420, 1981. View at Google Scholar · View at Scopus
  15. C. Alosious Gonsago, H. M. Albert, R. Umamaheswari, and A. Joseph Arul Pragasam, “Effect of urea doping on spectral, optical and thermal properties of L-histidine crystals,” Indian Journal of Science and Technology, vol. 5, no. 3, pp. 2369–2373, 2012. View at Google Scholar · View at Scopus
  16. S. D. Dalosto, R. Calvo, J. L. Pizarro, and M. I. Arriortua, “Structure, disorder, and molecular dynamics in Zn(D,L-histidine)2: EPR of copper ion dopants, X-ray diffraction, and calorimetric studies,” Journal of Physical Chemistry A, vol. 105, no. 6, pp. 1074–1085, 2001. View at Google Scholar · View at Scopus
  17. J. Donohue, L. R. Lavine, and J. S. Rollett, “The crystal structure of histidine hydrochloride monohydrate,” Journal of Acta Crystallography, vol. 9, pp. 655–662, 1956. View at Google Scholar
  18. G. Mangalam and S. Jerome Das, “Growth and characterization of α-hopeite single crystals in silica gel,” Archives of Applied Science Research, vol. 1, pp. 54–61, 2010. View at Google Scholar
  19. G. Anandha babu, G. Bhagavannarayana, and P. Ramasamy, “Synthesis, growth, thermal, optical, dielectric and mechanical properties of semi-organic NLO crystal: potassium hydrogen malate monohydrate,” Journal of Crystal Growth, vol. 310, no. 11, pp. 2820–2826, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. B. N. Figgis, Introduction to Ligand Fields, Wiley Eastern, New Delhi, India, 1996.
  21. R. V. S. S. N. Ravikumar, K. Ikeda, A. V. Chandrasekhar, Y. P. Reddy, P. S. Rao, and J. Yamauchi, “Site symmetry of Mn(II) and Co(II) in zinc phosphate glass,” Journal of Physics and Chemistry of Solids, vol. 64, no. 12, pp. 2433–2436, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. A. K. Petrosyan and A. A. Mirzakhanyan, “Zero-field splitting and g-Values of d8 ions in a trigonal crystal field,” Physica Status Solidi B, vol. 133, no. 1, pp. 315–319, 1986. View at Google Scholar · View at Scopus
  23. R. M. Macfarlane, “Perturbation methods in the calculation of zeeman interactions and magnetic dipole line strengths for d3 trigonal-crystal spectra,” Physical Review B, vol. 1, no. 3, pp. 989–1004, 1970. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Zhang, H. Li, B. Xi, Y. Che, and J. Zheng, “Growth and characterization of l-histidine nitrate single crystal, a promising semiorganic NLO material,” Materials Chemistry and Physics, vol. 108, no. 2-3, pp. 192–195, 2008. View at Publisher · View at Google Scholar · View at Scopus