Table of Contents
International Journal of Inorganic Chemistry
Volume 2013 (2013), Article ID 895956, 6 pages
http://dx.doi.org/10.1155/2013/895956
Research Article

Zn (II) and Cu (II) Halide Complexes of Poly(propylene amine) Dendrimer Analysed by Infrared and Raman Spectroscopies

1Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria
2Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
3Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe Campus, 06800 Ankara, Turkey
4Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
5Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1153 Sofia, Bulgaria

Received 12 April 2013; Revised 13 June 2013; Accepted 14 June 2013

Academic Editor: Alfonso Castiñeiras

Copyright © 2013 Ivo Grabchev et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. R. Newkome and C. D. Shreiner, “Poly(amidoamine), polypropylenimine, and related dendrimers and dendrons possessing different 12 branching motifs: an overview of the divergent procedures,” Polymer, vol. 49, no. 1, pp. 1–173, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Grabchev, D. Staneva, and R. Betcheva, “Fluorescent dendrimers as sensors for biologically important metal cations,” Current Medical Chemistry, vol. 19, no. 29, pp. 4976–4983, 2012. View at Google Scholar
  3. I. Grabchev, P. Bosch, M. McKenna, and A. Nedelcheva, “Synthesis and spectral properties of new green fluorescent poly(propyleneimine) dendrimers modified with 1,8-naphthalimide as sensors for metal cations,” Polymer, vol. 48, no. 23, pp. 6755–6762, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Grabchev, S. Dumas, J. Chovelon, and A. Nedelcheva, “First generation poly(propyleneimine) dendrimers functionalised with 1,8-naphthalimide units as fluorescence sensors for metal cations and protons,” Tetrahedron, vol. 64, no. 9, pp. 2113–2119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Grabchev, P. Bosch, M. McKenna, and D. Staneva, “A new colorimetric and fluorimetric sensor for metal cations based on poly(propilene amine) dendrimer modified with 1,8-naphthalimide,” Journal of Photochemistry and Photobiology A, vol. 201, no. 1, pp. 75–80, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Grabchev, D. Staneva, and J. Chovelon, “Photophysical investigations on the sensor potential of novel, poly(propylenamine) dendrimers modified with 1,8-naphthalimide units,” Dyes and Pigments, vol. 85, no. 3, pp. 189–193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Grabchev, D. Staneva, S. Dumas, and J. Chovelon, “Metal ions and protons sensing properties of new fluorescent 4-N-methylpiperazine-1,8-naphthalimide terminated poly(propyleneamine) dendrimer,” Journal of Molecular Structure, vol. 999, no. 1–3, pp. 16–21, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. P. Gautam, A. K. Gupta, S. Agrawal, and S. Sureka, “Spectroscopic characterization of dendrimers,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 4, no. 2, pp. 77–80, 2012. View at Google Scholar · View at Scopus
  9. B. Nikoobakht and M. A. El-Sayed, “Surface-enhanced Raman scattering studies on aggregated gold nanorods,” Journal of Physical Chemistry A, vol. 107, no. 18, pp. 3372–3378, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Fabris, M. Dante, T. Nguyen, J. B.-H. Tok, and G. C. Bazan, “SERS aptatags: new responsive metallic nanostructures for heterogeneous protein detection by surface enhanced raman spectroscopy,” Advanced Functional Materials, vol. 18, no. 17, pp. 2518–2525, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Kim, W. L. Daniel, and C. A. Mirkin, “Microarray-based multiplexed scanometric immunoassay for protein cancer markers using gold nanoparticle probes,” Analytical Chemistry, vol. 81, no. 21, pp. 9183–9187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Baran, A. Fiedler, H. Schulz, and M. Baranska, “In situ Raman and IR spectroscopic analysis of indigo dye,” Analytical Methods, vol. 2, no. 9, pp. 1372–1376, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. S. Refat, I. M. El-Deen, I. Grabchev, Z. M. Anwer, and S. El-Ghol, “Spectroscopic characterizations and biological studies on newly synthesized Cu2+ and Zn2+ complexes of first and second generation dendrimers,” Spectrochimica A, vol. 72, no. 4, pp. 772–782, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Leopold and B. Lendl, “A new method for fast preparation of highly surface-enhanced raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride,” Journal of Physical Chemistry B, vol. 107, no. 24, pp. 5723–5727, 2003. View at Google Scholar · View at Scopus
  15. I. Grabchev, V. Bojinov, and C. Petkov, “Infrared absorption studies of some new 1,8-naphthalimides,” Chemistry of Heterocyclic Compounds, vol. 39, no. 2, pp. 179–183, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. U. Tamer, I. H. BoyacI, E. Temur, A. Zengin, I. Dincer, and Y. Elerman, “Fabrication of magnetic gold nanorod particles for immunomagnetic separation and SERS application,” Journal of Nanoparticle Research, vol. 13, no. 8, pp. 3167–3176, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. R. A. Alvarez-Puebla and L. M. Liz-MArzan, “SERS Detection of small inorganic m olecules and ions,” Angewandte Chemie International Edition, vol. 51, no. 45, pp. 11214–11223, 2012. View at Google Scholar