Table of Contents Author Guidelines Submit a Manuscript
International Journal of Medicinal Chemistry
Volume 2012, Article ID 682495, 16 pages
http://dx.doi.org/10.1155/2012/682495
Research Article

A DFT and Semiempirical Model-Based Study of Opioid Receptor Affinity and Selectivity in a Group of Molecules with a Morphine Structural Core

Department of Chemistry, Faculty of Sciences, University of Chile, P.O. Box 653, Santiago, Chile

Received 31 May 2012; Accepted 20 September 2012

Academic Editor: O. Bruno

Copyright © 2012 Tamara Bruna-Larenas and Juan S. Gómez-Jeria. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. A. Gorin and G. R. Marshall, “Proposal for the biologically active conformation of opiates and enkephalin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 11, pp. 5179–5183, 1977. View at Google Scholar · View at Scopus
  2. S. K. Burt, G. H. Loew, and G. M. Hashimoto, “Quantum chemical studies of molecular features and receptor interactions that modulate opiate agonist and antagonist activity,” Annals of the New York Academy of Sciences, vol. 367, pp. 219–239, 1981. View at Google Scholar · View at Scopus
  3. M. C. Fournie-Zaluski, G. Gacel, and B. Maigret, “Structural requirements for specific recognition of μ or δ opiate receptors,” Molecular Pharmacology, vol. 20, no. 3, pp. 484–491, 1981. View at Google Scholar · View at Scopus
  4. G. Loew, G. Hashimoto, and L. Williamson, “Conformational-energy studies of tetrapeptide opiates. Candidate active and inactive conformations,” Molecular Pharmacology, vol. 22, no. 3, pp. 667–677, 1982. View at Google Scholar · View at Scopus
  5. A. Lavecchia, G. Greco, E. Novellino, F. Vittorio, and G. Ronsisvalle, “Modeling of κ-opioid receptor/agonists interactions using pharmacophore-based and docking simulations,” Journal of Medicinal Chemistry, vol. 43, no. 11, pp. 2124–2134, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. G. G. Bonner, P. Davis, D. Stropova et al., “Opiate aromatic pharmacophore structure-activity relationships in CTAP analogues determined by topographical bias, two-dimensional NMR, and biological activity assays,” Journal of Medicinal Chemistry, vol. 43, no. 4, pp. 569–580, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Bernard, A. Coop, and A. D. MacKerell Jr., “Conformationally sampled pharmacophore for peptidic δ opioid ligands,” Journal of Medicinal Chemistry, vol. 48, no. 24, pp. 7773–7780, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. N. E. Kuz'mina, E. S. Osipova, V. S. Kuz'min, and V. B. Sitnikov, “A general model of the opiate pharmacophore 1. Regions of the opiate pharmacophore responsible for nonselective affinity for the opiate receptor,” Russian Chemical Bulletin, vol. 55, no. 9, pp. 1523–1529, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. N. E. Kuz'mina, E. S. Osipova, V. S. Kuz'min, and V. B. Sitnikov, “General model of the opiate pharmacophore : 22. Regions of the opiate pharmacophore defining agonistic properties of the opiate receptor ligands,” Russian Chemical Bulletin, vol. 57, no. 6, pp. 1277–1284, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. N. E. Kuz'mina, E. S. Osipova, V. S. Kuz'min, and V. B. Sitnikov, “General model of the opiate pharmacophore : 33. Regions of the opiate pharmacophore determining antagonistic properties of the opiate receptor ligands,” Russian Chemical Bulletin, vol. 57, no. 6, pp. 1285–1298, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Bernard, A. Coop, and A. D. MacKerell, “Quantitative conformationally sampled pharmacophore for δ opioid ligands: reevaluation of hydrophobic moieties essential for biological activity,” Journal of Medicinal Chemistry, vol. 50, no. 8, pp. 1799–1809, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Shim, A. Coop, and A. D. MacKerell, “Consensus 3D model of μ-opioid receptor ligand efficacy based on a quantitative conformationally sampled pharmacophore,” Journal of Physical Chemistry B, vol. 115, no. 22, pp. 7487–7496, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. A. W. Lipkowski, S. W. Tam, and P. S. Portoghese, “Peptides as receptor selectivity modulators of opiate pharmacophores,” Journal of Medicinal Chemistry, vol. 29, no. 7, pp. 1222–1225, 1986. View at Google Scholar · View at Scopus
  14. P. S. Portoghese, D. L. Larson, G. Ronsisvalle et al., “Hybrid bivalent ligands with opiate and enkephalin pharmacophores,” Journal of Medicinal Chemistry, vol. 30, no. 11, pp. 1991–1994, 1987. View at Google Scholar · View at Scopus
  15. P. S. Portoghese, H. Nagase, and A. E. Takemori, “Only one pharmacophore is required for the κ opioid antagonist selectivity of norbinaltorphimine,” Journal of Medicinal Chemistry, vol. 31, no. 7, pp. 1344–1347, 1988. View at Google Scholar · View at Scopus
  16. D. L. Larson, R. M. Jones, S. A. Hjorth, T. W. Schwartz, and P. S. Portoghese, “Binding of norbinaltorphimine (norBNI) congeners to wild-type and mutant mu and kappa opioid receptors: molecular recognition loci for the pharmacophore and address components of kappa antagonists,” Journal of Medicinal Chemistry, vol. 43, no. 8, pp. 1573–1576, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Balboni, R. Guerrini, S. Salvadori et al., “Evaluation of the Dmt-Tic pharmacophore: conversion of a potent δ-opioid receptor antagonist into a potent δ agonist and ligands with mixed properties,” Journal of Medicinal Chemistry, vol. 45, no. 3, pp. 713–720, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Balboni, S. Salvadori, R. Guerrini et al., “Potent δ-opioid receptor agonists containing the Dmt-Tic pharmacophore,” Journal of Medicinal Chemistry, vol. 45, no. 25, pp. 5556–5563, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Grundt, I. A. Williams, J. W. Lewis, and S. M. Husbands, “Identification of a new scaffold for opioid receptor antagonism based on the 2-amino-1,1-dimethyl-7-hydroxytetralin pharmacophore,” Journal of Medicinal Chemistry, vol. 47, no. 21, pp. 5069–5075, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Balboni, S. Salvadori, R. Guerrini et al., “Direct influence of C-terminally substituted amino acids in the Dmt-Tic pharmacophore on δ-opioid receptor selectivity and antagonism,” Journal of Medicinal Chemistry, vol. 47, no. 16, pp. 4066–4071, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. D. J. Daniels, A. Kulkarni, Z. Xie, R. G. Bhushan, and P. S. Portoghese, “A bivalent ligand (KDAN-18) containing δ-antagonist and κ-agonist pharmacophores bridges δ2 and κ1 opioid receptor phenotype,” Journal of Medicinal Chemistry, vol. 48, no. 6, pp. 1713–1716, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Peng, B. I. Knapp, J. M. Bidlack, and J. L. Neumeyer, “Synthesis and preliminary in vitro investigation of bivalent ligands containing homo- and heterodimeric pharmacophores at μ, δ, and κ opioid receptors,” Journal of Medicinal Chemistry, vol. 49, no. 1, pp. 256–262, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. R. S. Agnes, Y. S. Lee, P. Davis et al., “Structure-activity relationships of bifunctional peptides based on overlapping pharmacophores at opioid and cholecystokinin receptors,” Journal of Medicinal Chemistry, vol. 49, no. 10, pp. 2868–2875, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Balboni, V. Onnis, C. Congiu et al., “Effect of lysine at C-terminus of the Dmt-Tic opioid pharmacophore,” Journal of Medicinal Chemistry, vol. 49, no. 18, pp. 5610–5617, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Balboni, S. Fiorini, A. Baldisserotto et al., “Further studies on lead compounds containing the opioid pharmacophore Dmt-Tic,” Journal of Medicinal Chemistry, vol. 51, no. 16, pp. 5109–5117, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Kracht, E. Rack, D. Schepmann, R. Fröhlich, and B. Wünsch, “Stereoselective synthesis and structure-affinity relationships of bicyclic κ receptor agonists,” Organic and Biomolecular Chemistry, vol. 8, no. 1, pp. 212–225, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Balboni, S. Salvadori, C. Trapella et al., “Evolution of the bifunctional lead μ agonist/δ Antagonist containing the 2′,6′-dimethyl- l -tyrosine-1,2,3,4- tetrahydroisoquinoline-3-carboxylic acid (Dmt-Tic) opioid pharmacophore,” ACS Chemical Neuroscience, vol. 1, no. 2, pp. 155–164, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Tang, J. Yang, M. M. Lunzer, M. D. Powers, and P. S. Portoghese, “A κ opioid pharmacophore becomes a spinally selective κ-δ Agonist when modified with a basic extender arm,” ACS Medicinal Chemistry Letters, vol. 2, no. 1, pp. 7–10, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. J. S. Gomez-Jeria and P. Sotomayor, “Quantum chemical study of electronic structure and receptor binding in opiates,” Journal of Molecular Structure: THEOCHEM, vol. 166, no. C, pp. 493–498, 1988. View at Google Scholar · View at Scopus
  30. J. S. Gómez-Jeria, L. Lagos-Arancibia, and E. Sobarzo-Sánchez, “Theoretical study of the opioid receptor selectivity of some 7-arylidenenaltrexones,” Boletin de la Sociedad Chilena de Quimica, vol. 48, no. 1, pp. 61–66, 2003. View at Google Scholar · View at Scopus
  31. J. S. Gómez-Jeria, L. A. Gerli-Candia, and S. M. Hurtado, “A structure-affinity study of the opioid binding of some 3-substituted morphinans,” Journal of the Chilean Chemical Society, vol. 49, no. 4, pp. 307–312, 2004. View at Google Scholar · View at Scopus
  32. K. Fukui, C. Nagata, and T. Yonezawa, “Electronic structure and auxin activity of benzoic acid derivatives,” Journal of the American Chemical Society, vol. 80, no. 9, pp. 2267–2270, 1958. View at Google Scholar · View at Scopus
  33. O. Chalvet, R. Daudel, and C. Moser, “A note on the interaction of carcinogenic molecules with cellular protein,” Cancer Research, vol. 18, no. 9, pp. 1033–1037, 1958. View at Google Scholar · View at Scopus
  34. O. Chalvet and R. Daudel, “Contribution à l’étude du mechanism d’action des hydrocarbures cancérogènes,” Comptes Rendus de l’Académie des Sciences, vol. 242, pp. 416–418, 1956. View at Google Scholar
  35. A. Pullman and B. Pullman, Érisation par les Substances Chimiques et Structure Moléculaire, Masson et Cie, Paris, France, 1955.
  36. C. C. J. Roothaan, “New developments in molecular orbital theory,” Reviews of Modern Physics, vol. 23, no. 2, pp. 69–89, 1951. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Fukui, T. Yonezawa, and H. Shingu, “A molecular orbital theory of reactivity in aromatic hydrocarbons,” The Journal of Chemical Physics, vol. 20, no. 4, pp. 722–725, 1952. View at Google Scholar · View at Scopus
  38. K. Fukui, T. Yonezawa, C. Nagata, and H. Shingu, “Molecular orbital theory of orientation in aromatic, heteroaromatic, and other conjugated molecules,” The Journal of Chemical Physics, vol. 22, no. 8, pp. 1433–1442, 1954. View at Google Scholar · View at Scopus
  39. K. Fukui, T. Yonezawa, and C. Nagata, “Interrelations of quantum-mechanical quantities concerning chemical reactivity of conjugated molecules,” The Journal of Chemical Physics, vol. 26, no. 4, pp. 831–841, 1957. View at Google Scholar · View at Scopus
  40. J. Sadlej, Semiempirical Methods in Quantum Chemistry, Ellis Horwood, New York, NY, USA, 1984.
  41. W. J. Hehre, L. Radom, P. von Schleyer, and J. Pople, Ab Initio Molecular Orbital Theory, Wiley Interscience, New York, NY, USA, 1986.
  42. R. G. Parr and Y. Weitao, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York, NY, USA, 1994.
  43. G. Klopman and R. F. Hudson, “Polyelectronic perturbation treatment of chemical reactivity,” Theoretica Chimica Acta, vol. 8, no. 2, pp. 165–174, 1967. View at Publisher · View at Google Scholar · View at Scopus
  44. R. F. Hudson and G. Klopman, “A general perturbation treatment of chemical reactivity,” Tetrahedron Letters, vol. 8, no. 12, pp. 1103–1108, 1967. View at Google Scholar · View at Scopus
  45. G. Klopman, “Chemical reactivity and the concept of charge- and frontier-controlled reactions,” Journal of the American Chemical Society, vol. 90, no. 2, pp. 223–234, 1968. View at Google Scholar · View at Scopus
  46. A. Cammarata, “Some electronic factors in drug-receptor interactions,” Journal of Medicinal Chemistry, vol. 11, no. 6, pp. 1111–1115, 1968. View at Google Scholar · View at Scopus
  47. A. J. Wohl, “Electronic molecular pharmacology: the benzothiadiazine antihypertensive agents. II. Multiple regression analyses relating biological potency and electronic structure,” Molecular Pharmacology, vol. 6, no. 3, pp. 195–205, 1970. View at Google Scholar · View at Scopus
  48. F. Peradejordi, A. N. Martin, and A. Cammarata, “Quantum chemical approach to structure-activity relationships of tetracycline antibiotics,” Journal of Pharmaceutical Sciences, vol. 60, no. 4, pp. 576–582, 1971. View at Google Scholar · View at Scopus
  49. F. Tomás and J. M. Aulló, “Monoamine oxidase inhibition by β-carbolines: a quantum chemical approach,” Journal of Pharmaceutical Sciences, vol. 68, no. 6, pp. 772–776, 1979. View at Google Scholar · View at Scopus
  50. O. K. Rice, Statistical Mechanics, Thermodynamics and Kinetics, W. H. Freeman, San Francisco, Calif, USA, 1967.
  51. G. Herzberg, Spectra and Molecular Structure. II. Infrared and Raman Spectra of Diatomic Molecules, Van Nostrand, New York, NY, USA, 1945.
  52. J. S. Gómez-Jeria, “On some problems in quantum pharmacology. I. The partition functions,” International Journal of Quantum Chemistry, vol. 23, pp. 1969–1972, 1983. View at Google Scholar
  53. J. S. Gómez-Jeria, “Modeling the drug-receptor interaction in quantum pharmacology,” in Physics, Chemistry and Biology, J. Maruani, Ed., vol. IV, pp. 215–231, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1989. View at Google Scholar
  54. K. Fukui, T. Yonezawa, and C. Nagata, “Theory of substitution in conjugated molecules,” Bulletin of the Chemical Society of Japan, vol. 27, no. 7, pp. 423–427, 1954. View at Google Scholar
  55. J. S. Gómez-Jeria, New reactivity indices in discrete and extended systems [Ph.D. thesis], Universidad Andrés Bello, Santiago, Chile, 2008.
  56. R. G. Parr and R. G. Pearson, “Absolute hardness: companion parameter to absolute electronegativity,” Journal of the American Chemical Society, vol. 105, no. 26, pp. 7512–7516, 1983. View at Google Scholar · View at Scopus
  57. R. G. Pearson, “Chemical hardness and bond dissociation energies,” Journal of the American Chemical Society, vol. 110, no. 23, pp. 7684–7690, 1988. View at Google Scholar · View at Scopus
  58. R. G. Pearson, “Absolute electronegativity and hardness: application to inorganic chemistry,” Inorganic Chemistry, vol. 27, no. 4, pp. 734–740, 1988. View at Google Scholar · View at Scopus
  59. Z. Zhou and R. G. Parr, “New measures of aromaticity: absolute hardness and relative hardness,” Journal of the American Chemical Society, vol. 111, no. 19, pp. 7371–7379, 1989. View at Google Scholar · View at Scopus
  60. R. G. Pearson, “Absolute electronegativity and hardness: applications to organic chemistry,” Journal of Organic Chemistry, vol. 54, no. 6, pp. 1423–1430, 1989. View at Google Scholar · View at Scopus
  61. R. G. Pearson, “Chemical hardness and the electronic chemical potential,” Inorganica Chimica Acta, vol. 198–200, pp. 781–786, 1992. View at Google Scholar · View at Scopus
  62. R. G. Pearson, “The principle of maximum hardness,” Accounts of Chemical Research, vol. 26, no. 5, pp. 250–255, 1993. View at Google Scholar · View at Scopus
  63. R. G. Parr, L. V. Szentpály, and S. Liu, “Electrophilicity index,” Journal of the American Chemical Society, vol. 121, no. 9, pp. 1922–1924, 1999. View at Publisher · View at Google Scholar · View at Scopus
  64. R. K. Roy, V. Usha, J. Paulovič, and K. Hirao, “Are the local electrophilicity descriptors reliable indicators of global electrophilicity trends?” Journal of Physical Chemistry A, vol. 109, no. 20, pp. 4601–4606, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. R. G. Parr and W. Yang, “Density-functional theory of the electronic structure of molecules,” Annual Review of Physical Chemistry, vol. 46, no. 1, pp. 701–728, 1995. View at Google Scholar · View at Scopus
  66. H. Chermette, “Chemical reactivity indexes in density functional theory,” Journal of Computational Chemistry, vol. 20, no. 1, pp. 129–154, 1999. View at Google Scholar · View at Scopus
  67. P. Geerlings, F. De Proft, and W. Langenaeker, “Conceptual density functional theory,” Chemical Reviews, vol. 103, no. 5, pp. 1793–1874, 2003. View at Google Scholar · View at Scopus
  68. P. W. Ayers, J. S. M. Anderson, and L. J. Bartolotti, “Perturbative perspectives on the chemical reaction prediction problem,” International Journal of Quantum Chemistry, vol. 101, no. 5, pp. 520–534, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. J. L. Gázquez, “Perspectives on the density functional theory of chemical reactivity,” Journal of the Mexican Chemical Society, vol. 52, no. 1, pp. 3–10, 2008. View at Google Scholar · View at Scopus
  70. S. B. Liu, “Conceptual density functional theory and some recent developments,” Acta Physico-Chimica Sinica, vol. 25, no. 3, pp. 590–600, 2009. View at Google Scholar · View at Scopus
  71. M. Ojeda-Vergara, Chemistry [M.S. thesis], University of Chile, Faculty of Sciences, 1991.
  72. J. S. Gomez-Jeria, M. Ojeda-Vergara, and C. Donoso-Espinoza, “Quantum-chemical structure-activity relationships in carbamate insecticides,” Molecular Engineering, vol. 5, no. 4, pp. 391–401, 1995. View at Publisher · View at Google Scholar · View at Scopus
  73. J. S. Gómez-Jeria and M. Ojeda-Vergara, “Parametrization of the orientational effects in the drug-receptor interaction,” Journal of the Chilean Chemical Society, vol. 48, no. 4, pp. 119–124, 2003. View at Google Scholar · View at Scopus
  74. J. S. Gomez-Jeria and D. R. Morales-Lagos, “Quantum chemical approach to the relationship between molecular structure and serotonin receptor binding affinity,” Journal of Pharmaceutical Sciences, vol. 73, no. 12, pp. 1725–1728, 1984. View at Google Scholar · View at Scopus
  75. J. S. Gómez-Jeria and D. Morales-Lagos, “The mode of binding of phenylalkylamines to the Serotonergic Receptor,” in QSAR in Design of Bioactive Drugs, J. R. Prous, Ed., pp. 145–173, J. R. Prous International Publishers, Barcelona, Spain, 1984. View at Google Scholar
  76. J. S. Gómez-Jeria, D. Morales-Lagos, J. I. Rodriguez-Gatica, and J. C. Saavedra-Aguilar, “The relation between electronic structure and pA2 in a series of 5-substituted tryptamines,” International Journal of Quantum Chemistry, vol. 28, pp. 421–428, 1985. View at Google Scholar
  77. J. S. Gomez-Jeria, D. Morales-Lagos, B. K. Cassels, and J. C. Saavedra-Aguilar, “Electronic structure and serotonin receptor binding affinity of 7-substituted tryptamines QSAR of 7-substituted tryptamines,” Quantitative Structure-Activity Relationships, vol. 5, no. 4, pp. 153–157, 1986. View at Google Scholar · View at Scopus
  78. J. S. Gomez-Jeria, B. K. Cassels, and J. C. Saavedra-Aguilar, “A quantum-chemical and experimental study of the hallucinogen (±)-1-(2,5-dimethoxy-4-nitrophenyl)-2-aminopropane (DON),” European Journal of Medicinal Chemistry, vol. 22, no. 5, pp. 433–437, 1987. View at Google Scholar · View at Scopus
  79. J. S. Gómez-Jeria and M. Ojeda-Vergara, “Electrostatic medium effects and formal quantum structure-activity relationships in apomorphines interacting with D1 and D2 dopamine receptors,” International Journal of Quantum Chemistry, vol. 61, no. 6, pp. 997–1002, 1997. View at Google Scholar · View at Scopus
  80. J. S. Gómez-Jeria and L. Lagos-Arancibia, “Quantum-chemical structure-affinity studies on kynurenic acid derivatives as Gly/NMDA receptor ligands,” International Journal of Quantum Chemistry, vol. 71, no. 6, pp. 505–511, 1999. View at Google Scholar · View at Scopus
  81. J. S. Gómez-Jeria, F. Soto-Morales, J. Rivas, and A. Sotomayor, “A theoretical structure-affinity relationship study of some cannabinoid derivatives,” Journal of the Chilean Chemical Society, vol. 53, no. 1, pp. 1382–1388, 2008. View at Google Scholar · View at Scopus
  82. J. S. Gómez-Jeria, F. Soto-Morales, and G. Larenas-Gutierrez, “A zindo/1 study of the cannabinoid-mediated inhibition of adenylyl cyclase,” Iranian International Journal of Science, vol. 4, pp. 151–164, 2003. View at Google Scholar
  83. F. Soto-Morales and J. S. Gómez-Jeria, “A theoretical study of the inhibition of wild-type and drug-resistant HTV-1 reverse transcriptase by some thiazolidenebenzenesulfonamide derivatives,” Journal of the Chilean Chemical Society, vol. 52, no. 3, pp. 1214–1219, 2007. View at Google Scholar · View at Scopus
  84. J. S. Gómez-Jeria, “A DFT study of the relationships between electronic structure and peripheral benzodiazepine receptor affinity in a group of N,N-dialkyl-2- phenylind0l-3-ylglyoxylamides,” Journal of the Chilean Chemical Society, vol. 55, no. 3, pp. 381–384, 2010. View at Google Scholar · View at Scopus
  85. B. Duperray, “Corrélations quantitatives entre activité pharmacologique et paramètres physicochimiques,” Chimie Thérapeutique, no. 4, pp. 305–334, 1971. View at Google Scholar
  86. A. Cammarata, “Some electronic factors in drug-receptor interactions,” Journal of Medicinal Chemistry, vol. 11, no. 6, pp. 1111–1115, 1968. View at Google Scholar · View at Scopus
  87. A. Cammarata, R. C. Allen, J. K. Seydel, and E. Wempe, “Cautions regarding the physical interpretation of statistically based structure-activity relationships,” Journal of Pharmaceutical Sciences, vol. 59, no. 10, pp. 1496–1499, 1970. View at Google Scholar · View at Scopus
  88. A. Cammarata, “Electronic representation of the lipophilic parameter, π,” Journal of Medicinal Chemistry, vol. 14, no. 4, pp. 269–274, 1971. View at Google Scholar · View at Scopus
  89. M. P. Wentland, R. Lou, Q. Lu et al., “Syntheses of novel high affinity ligands for opioid receptors,” Bioorganic and Medicinal Chemistry Letters, vol. 19, no. 8, pp. 2289–2294, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. J. S. Gómez-Jeria, “Calculation of the nucleophilic superdelocalizability by the CNDO/2 method,” Journal of Pharmaceutical Sciences, vol. 71, no. 12, pp. 1423–1424, 1982. View at Google Scholar · View at Scopus
  91. Hypercube, 1115 NW 4th Street, Gainesville, Fl. 32601, USA.
  92. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian 98, Revision A.11.3, Gaussian, Pittsburgh, Pa, USA, 2002.
  93. J. S. Gómez-Jeria, “An empirical way to correct some drawbacks of mulliken population analysis,” Journal of the Chilean Chemical Society, vol. 54, no. 4, pp. 482–485, 2009. View at Google Scholar · View at Scopus
  94. J. S. Gómez-Jeria, “Minimal molecular models for the study of nanostructures,” Journal of Computational and Theoretical Nanoscience, vol. 6, no. 6, pp. 1361–1369, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. A. E. Aliaga, H. Ahumada, K. Sepúlveda et al., “Surface-enhanced Raman scattering, molecular dynamics and molecular orbital studies of the MRKDV immunostimulant peptide,” The Journal of Physical Chemistry C, vol. 115, no. 10, pp. 3982–3989, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. C. Garrido, A. E. Aliaga, J. S. Gómez-Jeria, J. J. Cárcamo, E. Clavijo, and M. M. Campos-Vallette, “Interaction of the C-terminal peptide from pigeon cytochrome C with silver nanoparticles. A Raman, SERS and theoretical study,” Vibration Scopy, vol. 61, pp. 94–98, 2012. View at Google Scholar
  97. StatSoft, Statistica, v. 8. 0, 2007.
  98. J. M. Boeynaems and E. Jacques Dumont, Outlines of Receptor Theory, Elsevier Science, 1980.