Table of Contents Author Guidelines Submit a Manuscript
International Journal of Medicinal Chemistry
Volume 2012 (2012), Article ID 782058, 6 pages
http://dx.doi.org/10.1155/2012/782058
Research Article

Syntheses and In Vitro Biological Activity of Some Derivatives of C-9154 Antibiotic

1School of Chemistry, University of Kwazulu-Natal, Durban-4000, South Africa
2Department of Chemistry, Ahmadu Bello University, Zaria-810001, Nigeria
3College of Agriculture, Division of Agricultural Colleges, Ahmadu Bello University, Zaria-810001, Nigeria
4Department of Chemistry, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa-3886, South Africa

Received 29 May 2012; Accepted 30 October 2012

Academic Editor: Armando Rossello

Copyright © 2012 Isaac Asusheyi Bello et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. Aronson, “The naming of antibiotics,” Medicine and Health, vol. 80, no. 6, p. 180, 1997. View at Google Scholar · View at Scopus
  2. M. Radetsky, “The discovery of penicillin,” The Pediatric Infectious Disease Journal, vol. 15, no. 9, pp. 811–818, 1996. View at Google Scholar · View at Scopus
  3. S. A. Waksman, “What Is an antibiotic or an antibiotic substance?” Mycologia, vol. 39, no. 5, pp. 565–569, 1947. View at Google Scholar
  4. F. Von Nussbaum, M. Brands, B. Hinzen, S. Weigand, and D. Häbich, “Antibacterial natural products in medicinal chemistry—exodus or revival?” Angewandte Chemie, vol. 45, no. 31, pp. 5072–5129, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. H. B. Maruyama, Y. Suhara, J. Suzuki Watanabe et al., “A new antibiotic, fumaramidmycin. I. Production, biological properties and characterization of producer strain,” Journal of Antibiotics, vol. 28, no. 9, pp. 636–647, 1975. View at Google Scholar · View at Scopus
  6. T. Hasegawa, M. Asai, and K. Haibara, “A new antibiotic, C-9154,” Journal of Antibiotics, vol. 28, no. 9, pp. 713–716, 1975. View at Google Scholar · View at Scopus
  7. Y. Suhara, H. B. Maruyama, and Y. Kotoh, “A new antibiotic, fumaramidmycin. II. Isolation, structure and syntheses,” Journal of Antibiotics, vol. 28, no. 9, pp. 648–655, 1975. View at Google Scholar · View at Scopus
  8. J. Jumina, D. Siswanta, and A. K. Zulkarnain, “Sintesis dan Uji Aktivitas Biologis Turunan Antibiotik C-9154 Dari Vanilin,” Majalah Farmasi Indonesia, vol. 12, no. 3, pp. 24–35, 2001. View at Google Scholar
  9. J. Jumina, I. Tahir, and A. K. Zulkarnain, “Synthesis and antimicrobe activity evaluation of ethyl salicyl fumarate and ethyl furfuryl fumarate,” Majalah Farmasi Indonesia, vol. 13, no. 4, pp. 207–214, 2002. View at Google Scholar
  10. J. Jumina, A. K. Zulkarnain, and P. Mulyono, “Preparation and antibacterial activity of p-Anisyl ethyl fumarate and ethyl N-phenyl fumaramate,” Majalah Farmasi Indonesia, vol. 16, no. 2, pp. 116–123, 2005. View at Google Scholar
  11. F. L. Strand, “The plasma membrane as a regulatory organelle,” in Physiology: A Regulatory Systems Approach, pp. 49–67, MacMillan, New York, NY, USA, 2nd edition, 1983. View at Google Scholar
  12. R. Eckert, D. Randall, and G. Augustine, “Permeability and transport,” in Animal Physiology, pp. 65–99, W. H. Freeman, New York, NY, USA, 3rd edition, 1988. View at Google Scholar
  13. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, “The Plasma membrane,” in Molecular Biology of the Cell, pp. 276–337, Garland Publishing, New York, NY, USA, 2nd edition, 1989. View at Google Scholar