Table of Contents Author Guidelines Submit a Manuscript
International Journal of Medicinal Chemistry
Volume 2013, Article ID 256836, 7 pages
http://dx.doi.org/10.1155/2013/256836
Research Article

Synthesis and Anticancer Properties of Silver(I) Complexes Containing 2,6-Bis(substituted)pyridine Derivatives

1Applied Organic Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt
2Inorganic Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt
3Department of Pharmacognosy, National Research Centre, Dokki, Cairo 12622, Egypt

Received 15 November 2012; Revised 6 February 2013; Accepted 7 February 2013

Academic Editor: Feng Liang

Copyright © 2013 Korany A. Ali et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. B. Wright, D. L. Hansen, and R. E. Burrell, “The comparative efficacy of two antimicrobial barrier dressings: in vitro examination of two controlled release of silver dressings,” Wounds, vol. 10, no. 6, pp. 179–188, 1998. View at Google Scholar · View at Scopus
  2. J. W. Richard, B. A. Spencer, L. F. McCoy et al., “Acticoat versus Silverlon: the truth,” Journal of Burns and Surgical Wound Care, vol. 1, no. 1, pp. 11–19, 2002. View at Google Scholar
  3. A. D. Russell and W. B. Hugo, “7 antimicrobial activity and action of silver,” Progress in Medicinal Chemistry, vol. 31, pp. 351–370, 1994. View at Publisher · View at Google Scholar
  4. F. Fu-Ren and J. F. Allen, “Chemical, electrochemical, gravimetric, and microscopic studies on antimicrobial silver films,” The Journal of Physical Chemistry B, vol. 106, no. 2, pp. 279–287, 2002. View at Publisher · View at Google Scholar
  5. S. M. Mirsattari, R. R. Hammond, M. D. Sharpe, F. Y. Leung, and G. B. Young, “Myoclonic status epilepticus following repeated oral ingestion of colloidal silver,” Neurology, vol. 62, no. 8, pp. 1408–1410, 2004. View at Google Scholar · View at Scopus
  6. M. R. Alidaee, A. Taheri, P. Mansoori, and S. Z. Ghodsi, “Silver nitrate cautery in aphthous stomatitis: a randomized controlled trial,” British Journal of Dermatology, vol. 153, no. 3, pp. 521–525, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Tanweer and J. Hanif, “Re: silver nitrate cauterisation, does concentration matter?” Clinical Otolaryngology, vol. 33, no. 5, pp. 503–504, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. B. G. A. Lansdown, “The role of silver.,” European Tissue Repair Society Bulletin. In press.
  9. J. B. Wright, K. Lam, A. G. Buret, M. E. Olson, and R. E. Burrell, “Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing,” Wound Repair Regeneration, vol. 10, no. 3, pp. 141–151, 2002. View at Google Scholar
  10. H. N. Paddock, G. S. Schultz, and K. J. Perrin, “Clinical assessment of silver-coated antimicrobial dressing on MMPs and cytokine levels in non-healing wounds,” in Proceedings of the Annual Meeting of the Wound Healing Society, Baltimore, Md, USA, July 2002.
  11. H. Wu, J. Yuan, Y. Bai et al., “Synthesis, structure, DNA-binding properties and antioxidant activity of silver(I) complexes containing V-shaped bis-benzimidazole ligands,” Dalton Transactions, vol. 41, no. 29, pp. 8829–8838, 2012. View at Publisher · View at Google Scholar
  12. G. Malicorne, J. Bompart, L. Giral, and E. Despaux, “Synthesis and antibacterial activity of 4,7-dihydro-4-ethyl-7-oxothieno(3,2-b)pyridine-6-carboxylic acids,” European Journal of Medicinal Chemistry, vol. 26, no. 1, pp. 3–11, 1991. View at Publisher · View at Google Scholar · View at Scopus
  13. S. L. Hargreaves, B. L. Pilkington, S. E. Russell, and P. A. Worthington, “The synthesis of substituted pyridylpyrimidine fungicides using palladium-catalysed cross-coupling reactions,” Tetrahedron Letters, vol. 41, no. 10, pp. 1653–1656, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Szoko and T. Tabi, “Analysis of biological samples by capillary electrophoresis with laser induced fluorescence detection,” Journal of Pharmaceutical and Biomedical Analysis, vol. 53, no. 5, pp. 1180–1192, 2010. View at Publisher · View at Google Scholar
  15. H. Zhao, L. Shi, J. Q. Cao, W. Li, X. Wen, and Y. Q. Zhao, “A new triterpene saponin from Panax japonicus C. A. Meyer var major (Burk.) C. Y. Wu et K. M. Feng,” Chinese Chemical Letters, vol. 21, no. 10, pp. 1216–1218, 2010. View at Publisher · View at Google Scholar
  16. B. K. Banik and F. F. Becker, “Novel 6,12-disubstituted chrysene as potent anticancer agent: synthesis, in vitro and in vivo study,” European Journal of Medicinal Chemistry, vol. 45, no. 10, pp. 4687–4691, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. T. Rodrigues, J. C. Gomes, J. Smith, and F. Coelho, “Simple and highly diastereoselective access to 3,4-substituted tetrahydro-1,8-naphthyridines from Morita-Baylis-Hillman adducts,” Tetrahedron Letters, vol. 51, no. 38, pp. 4988–4990, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Mlostoń, A. Pieczonka, K. A. Ali, A. Linden, and H. Heimgartner, “A new approach to morpholin-2-one derivatives via the reaction of β-amino alcohols with dicyanofumarates,” Arkivoc, pp. 181–192, 2012. View at Publisher · View at Google Scholar
  19. A. M. Farag, A. S. Mayhoub, T. M. Abdalla et al., “Synthesis and structure-activity relationship studies of pyrazole-based heterocycles as antitumor agents,” Archiv der Pharmazie, vol. 343, no. 7, pp. 384–396, 2010. View at Publisher · View at Google Scholar
  20. A. E. Amr, K. A. Ali, and M. M. Abdalla, “Cytotoxic, antioxidant activities and structure activity relationship of some newly synthesized terpenoidal oxaliplatin analogs,” European Journal of Medicinal Chemistry, vol. 44, no. 2, pp. 901–907, 2009. View at Publisher · View at Google Scholar
  21. A. M. Farag, Y. M. Elkholy, and K. A. Ali, “Regioselective synthesis of diazaspiro[4.4]nona- and tetrazaspiro[4.5]deca-2,9-diene-6-one derivatives,” Journal of Heterocyclic Chemistry, vol. 45, no. 1, pp. 279–283, 2008. View at Google Scholar · View at Scopus
  22. S. A. Ghozlan, A. A. Mohammed, A. E. Amr, K. A. Ali, and A. A. Abd El-Wahab, “Synthesis and antimicrobial activity of some heterocyclic 2,6-bis(substituted)-1,3,4-thiadiazolo-, oxadiazolo-, and oxathiazolidino-pyridine derivatives from 2,6-pyridine dicarboxylic acid dihydrazide,” Journal of Heterocyclic Chemistry, vol. 48, no. 5, pp. 1103–1110, 2011. View at Publisher · View at Google Scholar
  23. K. A. Ali, E. A. Ragab, T. A. Farghaly, and M. M. Abdalla, “Synthesis and structure-activity relationship studies of pyrazole-based heterocycles as antitumor agents,” Acta Poloniae Pharmaceutica, vol. 68, pp. 237–247, 2011. View at Google Scholar
  24. A. M. Farag, K. A. K. Ali, T. M. A. El-Debss et al., “Design, synthesis and structure-activity relationship study of novel pyrazole-based heterocycles as potential antitumor agents,” European Journal of Medicinal Chemistry, vol. 45, no. 12, pp. 5887–5898, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. K. A. Ali, H. M. Hosni, E. A. Ragab, and S. I. Abd El-Moez, “Synthesis and antimicrobial evaluation of some new cyclooctanones and cyclooctane-based heterocycles,” Archiv der Pharmazie, vol. 345, pp. 231–239, 2012. View at Publisher · View at Google Scholar
  26. K. A. Ali, “A new convenient synthesis of some novel 2,6-disubstituted-pyridine derivatives,” Arkivoc, vol. 2010, no. 11, pp. 55–63, 2010. View at Google Scholar · View at Scopus
  27. K. A. Ali, M. A. Elsayed, and H. S. Abdalghfar, “Synthesis and reactions of 2,6-bis[3-oxo-3-propanenitrile-2-(N, N-dimethylamino) methylene]pyridine,” Arkivoc, vol. 2011, no. 2, Article ID 37179, 2010. View at Google Scholar · View at Scopus
  28. K. A. Ali, M. A. Elsayed, and A. M. Farag, “Synthesis of some new pyridine-2,6-bis-heterocycles,” Heterocycles, vol. 85, no. 8, pp. 1913–1923, 2012. View at Publisher · View at Google Scholar
  29. K. A. Ali, “Synthesis of pyridine-2,6-bis-((E)-2-benzylidene-3-oxopropanenitrile) and Its behavior towards nitrogen binucleophiles,” Heterocycles, vol. 85, no. 8, pp. 1975–1986, 2012. View at Publisher · View at Google Scholar
  30. M. T. Casey, P. Guinan, A. Canavan, M. McCann, C. Cardin, and N. B. Kelly, “Reaction of 1,1'-diacetylferrocene with hydrazine hydrate: synthesis and X-ray crystal structures of bis(hydrazine)bis(hydrazinecarboxylato-N',O)iron(II), [Fe(N2H4)2(O2CNHNH2)2], and the cyclic biferrocene diazine, [N(Me)CC5H4FeC5H4C(Me)N]2,” Polyhedron, vol. 10, no. 4-5, pp. 483–489, 1991. View at Google Scholar · View at Scopus
  31. M. M. Abd-Elzaher, “Synthesis and spectroscopic characterization of some tetradentate Schiff bases and their nickel, copper and zinc complexes,” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, vol. 30, no. 9, pp. 1805–1816, 2000. View at Publisher · View at Google Scholar
  32. S. Sarawat, G. S. Srivastava, and R. C. Mehrotra, “Schiff base complexes of organotin(IV). Reactions of trialkyltin(IV) chlorides and alkoxides with N-substituted salicylideneimines,” Journal of Organometallic Chemistry, vol. 129, no. 2, pp. 155–161, 1977. View at Publisher · View at Google Scholar
  33. M. M. Abd-Elzaher, “Synthesis and spectroscopic characterization of some ferrocenyl Schiff bases containing pyridine moiety and their complexation with cobalt, nickel, copper and zinc,” Journal of the Chinese Chemical Society, vol. 51, pp. 499–504, 2004. View at Google Scholar
  34. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983. View at Google Scholar · View at Scopus
  35. B. S. El-Menshawi, W. Fayad, K. Mahmoud et al., “Screening of natural products for therapeutic activity against solid tumors,” Indian Journal of Experimental Biology, vol. 48, no. 3, pp. 256–264, 2010. View at Google Scholar · View at Scopus