Table of Contents Author Guidelines Submit a Manuscript
International Journal of Medicinal Chemistry
Volume 2018, Article ID 3829307, 10 pages
https://doi.org/10.1155/2018/3829307
Research Article

Correlation between Virtual Screening Performance and Binding Site Descriptors of Protein Targets

Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

Correspondence should be addressed to Jamal Shamsara; ri.ca.smum@jarasmahs

Received 8 August 2017; Revised 6 November 2017; Accepted 29 November 2017; Published 11 January 2018

Academic Editor: Patrick J. Bednarski

Copyright © 2018 Jamal Shamsara. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Yuriev, J. Holien, and P. A. Ramsland, “Improvements, trends, and new ideas in molecular docking: 2012-2013 in review,” Journal of Molecular Recognition, vol. 28, no. 10, pp. 581–604, 2015. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Danishuddin and A. U. Khan, “Structure based virtual screening to discover putative drug candidates: Necessary considerations and successful case studies,” Methods, vol. 71, no. C, pp. 135–145, 2015. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Plewczynski, M. Łaźniewski, R. Augustyniak, and K. Ginalski, “Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database,” Journal of Computational Chemistry, vol. 32, no. 4, pp. 742–755, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. Wang, H. Sun, X. Yao et al., “Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: The prediction accuracy of sampling power and scoring power,” Physical Chemistry Chemical Physics, vol. 18, no. 18, pp. 12964–12975, 2016. View at Publisher · View at Google Scholar · View at Scopus
  5. O. Trott and A. J. Olson, “AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading,” Journal of Computational Chemistry, vol. 31, no. 2, pp. 455–461, 2010. View at Publisher · View at Google Scholar
  6. S.-Y. Huang, S. Z. Grinter, and X. Zou, “Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions,” Physical Chemistry Chemical Physics, vol. 12, no. 40, pp. 12899–12908, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Cheng, X. Li, Y. Li, Z. Liu, and R. Wang, “Comparative assessment of scoring functions on a diverse test set,” Journal of Chemical Information and Modeling, vol. 49, no. 4, pp. 1079–1093, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Wang, Y. Lu, X. Fang, and S. Wang, “An extensive test of 14 scoring functions using the PDBbind refined set of 800 protein-ligand complexes,” Journal of Chemical Information and Computer Sciences, vol. 44, no. 6, pp. 2114–2125, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Wang and S. Wang, “How does consensus scoring work for virtual library screening? An idealized computer experiment,” Journal of Chemical Information and Computer Sciences, vol. 41, no. 3–6, pp. 1422–1426, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. G. L. Warren, C. W. Andrews, A.-M. Capelli et al., “A critical assessment of docking programs and scoring functions,” Journal of Medicinal Chemistry, vol. 49, no. 20, pp. 5912–5931, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Xu, A. J. Lucke, and D. P. Fairlie, “Comparing sixteen scoring functions for predicting biological activities of ligands for protein targets,” Journal of Molecular Graphics and Modelling, vol. 57, pp. 76–88, 2015. View at Publisher · View at Google Scholar · View at Scopus
  12. M. M. Mysinger, M. Carchia, J. J. Irwin, and B. K. Shoichet, “Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking,” Journal of Medicinal Chemistry, vol. 55, no. 14, pp. 6582–6594, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. P. F. W. Stouten and R. T. Kroemer, “Docking and Scoring,” in Comprehensive Medicinal Chemistry II, pp. 255–281, Elsevier Ltd., 2007. View at Google Scholar
  14. M. D. Eldridge, C. W. Murray, T. R. Auton, G. V. Paolini, and R. P. Mee, “Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes,” Journal of Computer-Aided Molecular Design, vol. 11, no. 5, pp. 425–445, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Neudert and G. Klebe, “DSX: a knowledge-based scoring function for the assessment of protein-ligand complexes,” Journal of Chemical Information and Modeling, vol. 51, no. 10, pp. 2731–2745, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. G. M. Morris, H. Ruth, W. Lindstrom et al., “Software news and updates AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility,” Journal of Computational Chemistry, vol. 30, no. 16, pp. 2785–2791, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. A. Khamis, W. Gomaa, and W. F. Ahmed, “Machine learning in computational docking,” Artificial Intelligence in Medicine, vol. 63, no. 3, pp. 135–152, 2015. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Anand, D. Nagarajan, S. Mukherjee, and N. Chandra, “PLIC: Protein-ligand interaction clusters,” Database: The Journal of Biological Databases and Curation, vol. 2014, Article ID bau029, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Le Guilloux, P. Schmidtke, and P. Tuffery, “Fpocket: An open source platform for ligand pocket detection,” BMC Bioinformatics, vol. 10, article no. 168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Sobolev, E. Eyal, S. Gerzon et al., “SPACE: a suite of tools for protein structure prediction and analysis based on complementarity and environment,” Nucleic Acids Research, vol. 33, no. 2, pp. W39–W43, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. A. P. Carregal, F. V. Maciel, and J. B. Carregal, “Docking-based virtual screening of Brazilian natural compounds using the OOMT as the pharmacological target database,” Journal of Molecular Modeling, vol. 23, no. 111, pp. 1–9, 2017. View at Publisher · View at Google Scholar
  22. T. J. A. Ewing, S. Makino, A. G. Skillman, and I. D. Kuntz, “DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases,” Journal of Computer-Aided Molecular Design, vol. 15, no. 5, pp. 411–428, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. M. M. Jaghoori, B. Bleijlevens, and S. D. Olabarriaga, “1001 Ways to run AutoDock Vina for virtual screening,” Journal of Computer-Aided Molecular Design, vol. 30, no. 3, pp. 237–249, 2016. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Shamsara, “Evaluation of 11 scoring functions performance on matrix metalloproteinases,” International Journal of Medicinal Chemistry and Analysis, vol. 2014, Article ID 162150, 9 pages, 2014. View at Publisher · View at Google Scholar