Table of Contents
International Journal of Metals
Volume 2013, Article ID 743652, 10 pages
http://dx.doi.org/10.1155/2013/743652
Research Article

First Principles Study of Electronic Structure and Magnetic Properties of TMH (TM = Cr, Mn, Fe, Co)

1Kamaraj College, Tuticorin, Tamilnadu 628003, India
2Department of Physics, N.M.S.S. Vellaichamy Nadar College, Madurai, Tamilnadu 625019, India
3SRM University, Chennai, Tamilnadu 600030, India

Received 31 March 2013; Accepted 18 June 2013

Academic Editor: Dong B. Lee

Copyright © 2013 S. Kanagaprabha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Vajeeston, P. Ravindran, A. Kjekshus, and H. Fjellvåg, “Structural stability of BeH2 at high pressures,” Applied Physics Letters, vol. 84, no. 1, pp. 34–36, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Fukai, Metal Hydrogen System: Basics Bulk Properties, Springer, Berlin, Germany, 2005.
  3. N. L. Rosi, J. Eckert, M. Eddaoudi et al., “Hydrogen storage in microporous metal-organic frameworks,” Science, vol. 300, no. 5622, pp. 1127–1129, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. I. P. Jain, C. Lal, and A. Jain, “Hydrogen storage in Mg: a most promising material,” International Journal of Hydrogen Energy, vol. 35, no. 10, pp. 5133–5144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Latroche, “Structural and thermodynamic properties of metallic hydrides used for energy storage,” Journal of Physics and Chemistry of Solids, vol. 65, no. 2-3, pp. 517–522, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Quijano, R. de Coss, and D. J. Singh, “Electronic structure and energetics of the tetragonal distortion for TiH2, ZrH2, and HfH2: a first-principles study,” Physical Review B, vol. 80, no. 18, Article ID 184103, 8 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Miwa and A. Fukumoto, “First-principles study on 3d transition-metal dihydrides,” Physical Review B, vol. 65, no. 15, Article ID 155114, 7 pages, 2002. View at Google Scholar · View at Scopus
  8. H. Smithson, C. A. Marianetti, D. Morgan, A. Van der Ven, A. Predith, and G. Ceder, “First-principles study of the stability and electronic structure of metal hydrides,” Physical Review B, vol. 66, no. 14, Article ID 144107, 10 pages, 2002. View at Google Scholar · View at Scopus
  9. V. E. Antonov, “Phase transformations, crystal and magnetic structures of high-pressure hydrides of d-metals,” Journal of Alloys and Compounds, vol. 330–332, pp. 110–116, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. V. E. Antonov, A. I. Beskrovnyy, V. K. Fedotov et al., “Crystal structure and lattice dynamics of chromium hydrides,” Journal of Alloys and Compounds, vol. 430, no. 1-2, pp. 22–28, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Kangaprabha, A. T. Asvini Meenaatci, R. Rajeswarapalanichamy, and K. Iyakutti, “Electronic structure and magnetic properties of FeH and CoH,” in Proceedings of the AIP Conference Proceedings, vol. 1447, pp. 71–72, 2012.
  12. O. K. Andersen, “Linear methods in band theory,” Physical Review B, vol. 12, no. 8, pp. 3060–3083, 1975. View at Publisher · View at Google Scholar · View at Scopus
  13. H. L. Skriver, The LMTO Method, Springer, Heidelberg, Germany, 1984.
  14. N. E. Christensen, D. L. Novikov, R. E. Alonso, and C. O. Rodriguez, “Solids under pressure. Ab initio theory,” Physica Status Solidi B, vol. 211, no. 1, pp. 5–16, 1999. View at Google Scholar · View at Scopus
  15. O. Jepson and O. K. Anderson, “The electronic structure of h.c.p. Ytterbium,” Solid State Communications, vol. 9, no. 20, pp. 1763–1767, 1971. View at Google Scholar · View at Scopus
  16. E. Sjöstedt, L. Nordström, and D. J. Singh, “An alternative way of linearizing the augmented plane-wave method,” Solid State Communications, vol. 114, no. 1, pp. 15–20, 2000. View at Publisher · View at Google Scholar · View at Scopus