Table of Contents
International Journal of Medical Genetics
Volume 2015, Article ID 123159, 6 pages
http://dx.doi.org/10.1155/2015/123159
Research Article

The Association of 5-HTTLPR XLL Genotype with Higher Cortisol Levels in African Americans

1Human Performance Laboratory, Uniformed Service University of the Health Sciences, Bethesda, MD 20814, USA
2Naval Medical Research Center, Silver Spring, MD 20910, USA
3Children’s National Medical Center, Washington Hospital Center, Washington, DC 20010, USA

Received 29 August 2014; Revised 15 December 2014; Accepted 18 December 2014

Academic Editor: Kei Kamide

Copyright © 2015 Carmen L. Contreras-Sesvold et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. S. Barr, T. K. Newman, S. Lindell et al., “Early experience and sex interact to influence limbic-hypothalamic- pituitary-adrenal-axis function after acute alcohol administration in rhesus macaques (Macaca mulatta),” Alcoholism: Clinical and Experimental Research, vol. 28, no. 7, pp. 1114–1119, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. C. S. Barr, T. K. Newman, C. Shannon et al., “Rearing condition and rh5-HTTLPR interact to influence limbic-hypothalamic-pituitary-adrenal axis response to stress in infant macaques,” Biological Psychiatry, vol. 55, no. 7, pp. 733–738, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. M. Wankerl, B.-C. Zyriax, B. Bondy, K. Hinkelmann, E. Windler, and C. Otte, “Serotonin transporter gene-linked polymorphic region (5-HTTLPR) and diurnal cortisol: a sex by genotype interaction,” Biological Psychology, vol. 85, no. 2, pp. 344–346, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. L. K. Heisler, N. Pronchuk, K. Nonogaki et al., “Serotonin activates the hypothalamic-pituitary-adrenal axis via serotonin 2C receptor stimulation,” The Journal of Neuroscience, vol. 27, no. 26, pp. 6956–6964, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. J. Hoffman, J. Kaplan, B. Kinkead, S. Berga, and M. Wilson, “Metabolic and reproductive consequences of the serotonin transporter promoter polymorphism (5-HTTLPR) in adult female rhesus monkeys (Macaca mulatta),” Endocrine, vol. 31, no. 2, pp. 202–211, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Jiang, J. Wang, T. Luo, and Q. Li, “Impaired hypothalamic-pituitary-adrenal axis and its feedback regulation in serotonin transporter knockout mice,” Psychoneuroendocrinology, vol. 34, no. 3, pp. 317–331, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. E. S. Buhl, T. K. Jensen, N. Jessen et al., “Treatment with an SSRI antidepressant restores hippocampo-hypothalamic corticosteroid feedback and reverses insulin resistance in low-birth-weight rats,” American Journal of Physiology—Endocrinology and Metabolism, vol. 298, no. 5, pp. E920–E929, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. C. Kirschbaum and D. H. Hellhammer, “Salivary cortisol in psychobiological research: an overview,” Neuropsychobiology, vol. 22, no. 3, pp. 150–169, 1989. View at Publisher · View at Google Scholar · View at Scopus
  9. E. K. Adam and M. R. Gunnar, “Relationship functioning and home and work demands predict individual differences in diurnal cortisol patterns in women,” Psychoneuroendocrinology, vol. 26, no. 2, pp. 189–208, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. J. C. Pruessner, O. T. Wolf, D. H. Hellhammer et al., “Free cortisol levels after awakening: a reliable biological marker for the assessment of adrenocortical activity,” Life Sciences, vol. 61, no. 26, pp. 2539–2549, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Rosmond and P. Björntorp, “The hypothalamic-pituitary-adrenal axis activity as a predictor of cardiovascular disease, type 2 diabetes and stroke,” Journal of Internal Medicine, vol. 247, no. 2, pp. 188–197, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. M. R. Gunnar, S. J. Morison, K. Chisholm, and M. Schuder, “Salivary cortisol levels in children adopted from Romanian orphanages,” Development and Psychopathology, vol. 13, no. 3, pp. 611–628, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. M. R. Gunnar and D. M. Vazquez, “Low cortisol and a flattening of expected daytime rhythm: potential indices of risk in human development,” Development and Psychopathology, vol. 13, no. 3, pp. 515–538, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. C. M. Ghiciuc, C. L. Cozma-Dima, V. Pasquali et al., “Awakening responses and diurnal fluctuations of salivary cortisol, DHEA-S and alpha-amylase in healthy male subjects,” Neuroendocrinology Letters, vol. 32, no. 4, pp. 475–480, 2011. View at Google Scholar · View at Scopus
  15. E. C. Prom-Wormley, T. P. York, K. C. Jacobson et al., “Genetic and environmental effects on diurnal dehydroepiandrosterone sulfate concentrations in middle-aged men,” Psychoneuroendocrinology, vol. 36, no. 10, pp. 1441–1452, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. R. H. Straub, J. Schölmerich, and B. Zietz, “Replacement therapy with DHEA plus corticosteroids in patients with chronic inflammatory diseases—substitutes of adrenal and sex hormones,” Zeitschrift für Rheumatologie, vol. 59, supplement 2, pp. II108–II118, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Fischli, S. Jenni, S. Allemann et al., “Dehydroepiandrosterone sulfate in the assessment of the hypothalamic-pituitary-adrenal axis,” The Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 2, pp. 539–542, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. M. A. Sheridan, J. How, M. Araujo, M. A. Schamberg, and C. A. Nelson, “What are the links between maternal social status, hippocampal function, and HPA axis function in children?” Developmental Science, vol. 16, no. 5, pp. 665–675, 2013. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. J. Mouthaan, M. Sijbrandij, J. S. K. Luitse, J. C. Goslings, B. P. R. Gersons, and M. Olff, “The role of acute cortisol and DHEAS in predicting acute and chronic PTSD symptoms,” Psychoneuroendocrinology, vol. 45, pp. 179–186, 2014. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. G. S. Smith, F. E. Lotrich, A. K. Malhotra et al., “Effects of serotonin transporter promoter polymorphisms on serotonin function,” Neuropsychopharmacology, vol. 29, no. 12, pp. 2226–2234, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. A. Heils, A. Teufel, S. Petri et al., “Allelic variation of human serotonin transporter gene expression,” Journal of Neurochemistry, vol. 66, no. 6, pp. 2621–2624, 1996. View at Google Scholar · View at Scopus
  22. D. A. Collier, G. Stöber, T. Li et al., “A novel functional polymorphism within the promoter of the serotonin transporter gene: possible role in susceptibility to affective disorders,” Molecular Psychiatry, vol. 1, no. 6, pp. 453–460, 1996. View at Google Scholar · View at Scopus
  23. K.-P. Lesch, D. Bengel, A. Heils et al., “Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region,” Science, vol. 274, no. 5292, pp. 1527–1531, 1996. View at Publisher · View at Google Scholar · View at Scopus
  24. X.-Z. Hu, R. H. Lipsky, G. Zhu et al., “Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder,” The American Journal of Human Genetics, vol. 78, no. 5, pp. 815–826, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. X. Hu, G. Oroszi, J. Chun, T. L. Smith, D. Goldman, and M. A. Schuckit, “An expanded evaluation of the relationship of four alleles to the level of response to alcohol and the alcoholism risk,” Alcoholism: Clinical and Experimental Research, vol. 29, no. 1, pp. 8–16, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. C. L. Contreras-Sesvold, N. Sambuughin, A. Blokhin, and P. A. Deuster, “A protocol comparison for the analysis of heat shock protein AlB +A1538G SNP,” Cell Stress and Chaperones, vol. 15, no. 2, pp. 205–209, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. D. L. Murphy, M. A. Fox, K. R. Timpano et al., “How the serotonin story is being rewritten by new gene-based discoveries principally related to SLC6A4, the serotonin transporter gene, which functions to influence all cellular serotonin systems,” Neuropharmacology, vol. 55, no. 6, pp. 932–960, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. E. A. Ehli, Y. Hu, T. Lengyel-Nelson, J. J. Hudziak, and G. E. Davies, “Identification and functional characterization of three novel alleles for the serotonin transporter-linked polymorphic region,” Molecular Psychiatry, vol. 17, no. 2, pp. 185–192, 2012. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. N. Alexander, Y. Kuepper, A. Schmitz, R. Osinsky, E. Kozyra, and J. Hennig, “Gene-environment interactions predict cortisol responses after acute stress: Implications for the etiology of depression,” Psychoneuroendocrinology, vol. 34, no. 9, pp. 1294–1303, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. S. Wüst, R. Kumsta, J. Treutlein et al., “Sex-specific association between the 5-HTT gene-linked polymorphic region and basal cortisol secretion,” Psychoneuroendocrinology, vol. 34, no. 7, pp. 972–982, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. J. R. Wendland, B. J. Martin, M. R. Kruse, K.-P. Lesch, and D. L. Murphy, “Simultaneous genotyping of four functional loci of human SLC6A4, with a reappraisal of 5-HTTLPR and rs25531,” Molecular Psychiatry, vol. 11, no. 3, pp. 224–226, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus