Table of Contents
International Journal of Molecular Imaging
Volume 2011, Article ID 197381, 8 pages
http://dx.doi.org/10.1155/2011/197381
Research Article

Quantitative Accuracy of Low-Count SPECT Imaging in Phantom and In Vivo Mouse Studies

Centre for Molecular Oncology and Imaging, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK

Received 1 September 2010; Revised 12 December 2010; Accepted 19 January 2011

Academic Editor: Habib Zaidi

Copyright © 2011 Ciara M. Finucane et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. K. Sosabowski, T. Matzow, J. M. Foster et al., “Targeting of CCK-2 receptor-expressing tumors using a radiolabeled divalent gastrin peptide,” Journal of Nuclear Medicine, vol. 50, no. 12, pp. 2082–2089, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. L. R. MacDonald, B. E. Patt, J. S. Iwanczyk et al., “Pinhole SPECT of mice using the LumaGEM gamma camera,” IEEE Transactions on Nuclear Science, vol. 48, no. 3, pp. 830–836, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Torres Martin De Rosales, C. Finucane, S. J. Mather, and P. J. Blower, “Bifunctional bisphosphonate complexes for the diagnosis and therapy of bone metastases,” Chemical Communications, no. 32, pp. 4847–4849, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. S. K. Carlson, K. L. Classic, E. M. Hadac et al., “In vivo quantitation of intratumoral radioisotope uptake using micro-single photon emission computed tomography/computed tomography,” Molecular Imaging and Biology, vol. 8, no. 6, pp. 324–332, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Seo, “Quantification of SPECT and PET for drug development,” Current Radiopharmaceuticals, vol. 1, pp. 17–21, 2008. View at Google Scholar
  6. P. L. Wen, J. S. Lewis, J. Kim et al., “DOTA-D-Tyr1-octreotate: a somatostatin analogue for labeling with metal and halogen radionuclides for cancer imaging and therapy,” Bioconjugate Chemistry, vol. 13, no. 4, pp. 721–728, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Rudin and R. Weissleder, “Molecular imaging in drug discovery and development,” Nature Reviews Drug Discovery, vol. 2, no. 2, pp. 123–131, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. B. L. Franc, P. D. Acton, C. Mari, and B. H. Hasegaway, “Small-animal SPECT and SPECT/CT: important tools for preclinical investigation,” Journal of Nuclear Medicine, vol. 49, no. 10, pp. 1651–1663, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. A. B. Hwang, B. L. Franc, G. T. Gullberg, and B. H. Hasegawa, “Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals,” Physics in Medicine and Biology, vol. 53, no. 9, pp. 2233–2252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Forrer, R. Valkema, B. Bernard et al., “In vivo radionuclide uptake quantification using a multi-pinhole SPECT system to predict renal function in small animals,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 33, no. 10, pp. 1214–1217, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Garrood, M. Blades, D. O. Haskard, S. Mather, and C. Pitzalis, “A novel model for the pre-clinical imaging of inflamed human synovial vasculature,” Rheumatology, vol. 48, no. 8, pp. 926–931, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Transactions on Medical Imaging, vol. 13, no. 4, pp. 601–609, 1994. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Sosabowski, C. Finucane, J. Foster, D. Ellison, J. Burnet, and S. Mather, “Comparison of 111In-labelled CCK2-receptor targetingpeptides using NanoSPECT/CT imaging,” Submitted to European Journal of Nuclear Medicine and Molecular Imaging.
  14. E. J. Hoffman, S. C. Huang, M. E. Phelps, and D. E. Kuhl, “Quantitation in positron emission computed tomography—4. Effect of accidental coincidences,” Journal of Computer Assisted Tomography, vol. 5, no. 3, pp. 391–400, 1981. View at Google Scholar · View at Scopus
  15. C. L. Chen, Y. Wang, J. J. S. Lee, and B. M. W. Tsui, “Toward quantitative small animal pinhole SPECT: Assessment of quantitation accuracy prior to image compensations,” Molecular Imaging and Biology, vol. 11, no. 3, pp. 195–203, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. B. Hwang and B. H. Hasegawa, “Attenuation correction for small animal SPECT imaging using x-ray CT data,” Medical Physics, vol. 32, no. 9, pp. 2799–2804, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Vanhove, M. Defrise, A. Bossuyt, and T. Lahoutte, “Improved quantification in single-pinhole and multiple-pinhole SPECT using micro-CT information,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 36, no. 7, pp. 1049–1063, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Wu, F. van der Have, B. Vastenhouw, R. A. J. O. Dierckx, A. M. J. Paans, and F. J. Beekman, “Absolute quantitative total-body small-animal SPECT with focusing pinholes,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 37, pp. 2127–2135, 2010. View at Publisher · View at Google Scholar · View at Scopus