Table of Contents
International Journal of Molecular Imaging
Volume 2011, Article ID 298102, 10 pages
http://dx.doi.org/10.1155/2011/298102
Research Article

Hybrid Modality Fusion of Planar Scintigrams and CT Topograms to Localize Sentinel Lymph Nodes in Breast Lymphoscintigraphy: Technical Description and Phantom Studies

1Graduate School of Biomedical Sciences, The University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
2Division of Diagnostic Imaging, Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
3Department of Radiology, University of Washington, Seattle, Washington 98195, USA
4Department of Radiology, Oregon Health and Science University, Portland, OR 97239, USA
5Centre for Oncology and Molecular Medicine (COMM), University of Dundee—Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland
6Division of Diagnostic Imaging, Department of Nuclear Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA

Received 20 August 2010; Accepted 11 October 2010

Academic Editor: Hongming Zhuang

Copyright © 2011 Renée L. Dickinson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. R. Krynyckyi, C. K. Kim, M. R. Goyenechea, P. T. Chan, Z.-Y. Zhang, and J. Machac, “Clinical breast lymphoscintigraphy: optimal techniques for performing studies, image atlas, and analysis of images,” Radiographics, vol. 24, no. 1, pp. 121–139, 2004. View at Google Scholar · View at Scopus
  2. I. M. C. Van der Ploeg, R. A. Valdés Olmos, B. B. R. Kroon, and O. E. Nieweg, “The hybrid SPECT/CT as an additional lymphatic mapping tool in patients with breast cancer,” World Journal of Surgery, vol. 32, no. 9, pp. 1930–1934, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. B. R. Krynyckyi, M. Miner, J. M. Ragonese, M. Firestone, C. K. Kim, and J. Machac, “Technical aspects of performing lymphoscintigraphy: optimization of methods used to obtain images,” Clinical Nuclear Medicine, vol. 25, no. 12, pp. 978–985, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. M. V. Mar, R. L. Dickinson, W. D. Erwin, and R. E. Wendt III, “Optimal 57Co flood source activity and acquisition time for lymphoscintigraphy localization images,” Journal of Nuclear Medicine Technology, vol. 36, no. 2, pp. 82–87, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. B. R. Krynyckyi, H. Chun, H. K. Hyun, Y. Eskandar, C. K. Kim, and J. Machac, “Factors affecting visualization rates of internal mammary sentinel nodes during lymphoscintigraphy,” Journal of Nuclear Medicine, vol. 44, no. 9, pp. 1387–1393, 2003. View at Google Scholar · View at Scopus
  6. B. R. Krynyckyi, C. K. Kim, M. Goyenechea, and J. Machac, “Methods to outline the patient during lymphoscintigraphy,” Journal of Nuclear Medicine, vol. 44, no. 6, pp. 992–993, 2003. View at Google Scholar · View at Scopus
  7. B. R. Krynyckyi, S. Sata, I. Zolty, C. K. Kim, and K. Knešaurek, “Reducing exposure from 57Co sources during breast lymphoscintigraphy by optimizing energy windows and other suggested enhancements of acquisition and the display of images,” Journal of Nuclear Medicine Technology, vol. 32, no. 4, pp. 198–205, 2004. View at Google Scholar · View at Scopus
  8. E. Clarke, A. Notghi, and K. Harding, “Improved body-outline imaging technique for localization of sentinel lymph nodes in breast surgery,” Journal of Nuclear Medicine, vol. 43, no. 9, pp. 1181–1183, 2002. View at Google Scholar · View at Scopus
  9. B. H. Hasegawa, E. L. Gingold, S. M. Reilly, S.-C. Liew, and C. E. Cann, “Description of a simultaneous emission-transmission CT system,” in Medical Imaging IV: Image Formation, vol. 1231 of Proceedings of SPIE, Newport Beach, Calif, USA, February 1990. View at Publisher · View at Google Scholar
  10. T. Beyer, D. W. Townsend, T. Brun et al., “A combined PET/CT scanner for clinical oncology,” Journal of Nuclear Medicine, vol. 41, no. 8, pp. 1369–1379, 2000. View at Google Scholar · View at Scopus
  11. D. B. Husarik and H. C. Steinert, “Single-photon emission computed tomography/computed tomographyfor sentinel node mapping in breast cancer,” Seminars in Nuclear Medicine, vol. 37, no. 1, pp. 29–33, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Lerman, G. Lievshitz, O. Zak, U. Metser, S. Schneebaum, and E. Even-Sapir, “Improved sentinel node identification by SPECT/CT in overweight patients with breast cancer,” Journal of Nuclear Medicine, vol. 48, no. 2, pp. 201–206, 2007. View at Google Scholar · View at Scopus
  13. H. Lerman, U. Metser, G. Lievshitz, F. Sperber, S. Shneebaum, and E. Even-Sapir, “Lymphoscintigraphic sentinel node identification in patients with breast cancer: the role of SPECT-CT,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 33, no. 3, pp. 329–337, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. M. V. Mar, S. A. Miller, E. E. Kim, and H. A. Macapinlac, “Evaluation and localization of lymphatic drainage and sentinel lymph nodes in patients with head and neck melanomas by hybrid SPECT/CT lymphoscintigraphic imaging,” Journal of Nuclear Medicine Technology, vol. 35, no. 1, pp. 10–16, 2007. View at Google Scholar · View at Scopus
  15. B. A. E. Kapteijn, O. E. Nieweg, S. H. Muller et al., “Validation of gamma probe detection of the sentinel node in melanoma,” Journal of Nuclear Medicine, vol. 38, no. 3, pp. 362–366, 1997. View at Google Scholar · View at Scopus
  16. T. Rink, T. Heuser, H. Fitz, H.-J. Schroth, E. Weller, and H. H. Zippel, “Lymphoscintigraphic sentinel node imaging and gamma probe detection in breast cancer with Tc-99m nanocolloidal albumin: results of an optimized protocol,” Clinical Nuclear Medicine, vol. 26, no. 4, pp. 293–298, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. C. De Cicco, M. Cremonesi, A. Luini et al., “Lymphoscintigraphy and radioguided biopsy of the sentinel axillary node in breast cancer,” Journal of Nuclear Medicine, vol. 39, no. 12, pp. 2080–2084, 1998. View at Google Scholar · View at Scopus
  18. J. C. O'Daniel, D. M. Stevens, and D. D. Cody, “Reducing radiation exposure from survey CT scans,” American Journal of Roentgenology, vol. 185, no. 2, pp. 509–515, 2005. View at Google Scholar · View at Scopus
  19. D. Hart and B. Wall, “Report No. National Radiological Protection Board (NRPB) Report W4,” 2002. View at Google Scholar
  20. M. F. McNitt-Gray, “AAPM/RSNA physics tutorialfor residents: topics in CT: radiation dose in CT,” Radiographics, vol. 22, no. 6, pp. 1541–1553, 2002. View at Google Scholar · View at Scopus
  21. C. H. McCollough, D. D. Cody, S. Edyvean et al., “The measurement, reporting, and management of radiation dose in CT,” AAPM Report 96, 2008. View at Google Scholar
  22. “European Guidelines of Quality Criteria for Computed Tomography,” vol. 2007, May 1999, http://www.drs.dk/guidelines/ct/quality/htmlindex.htm.