Table of Contents
International Journal of Molecular Imaging
Volume 2011, Article ID 472375, 8 pages
http://dx.doi.org/10.1155/2011/472375
Research Article

Comparison of 111In Leakage from Labeled Endocardial and Epicardial Cells: Impact on Modeling Viability of Cells to Be Transplanted into Myocardium

1Imaging Program, Lawson Health Research Institute, 268 Grosvenor Street, London, ON, Canada N6A 4V2
2Department of Medical Biophysics, University of Western Ontario, London, ON, Canada N6A 3K7
3Division of Cardiology, London Health Sciences Centre, London, ON, Canada N6A 5W9

Received 1 August 2010; Revised 18 November 2010; Accepted 9 February 2011

Academic Editor: Farouc Jaffer

Copyright © 2011 Kimberley J. Blackwood et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. L. Beeres, F. M. Bengel, J. Bartunek et al., “Role of imaging in cardiac stem cell therapy,” Journal of the American College of Cardiology, vol. 49, no. 11, pp. 1137–1148, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. K. C. Wollert and H. Drexler, “Cell therapy for the treatment of coronary heart disease: a critical appraisal,” Nature Reviews Cardiology, vol. 7, no. 4, pp. 204–215, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Jiang, B. He, Q. Zhang et al., “Randomized controlled trials on the therapeutic effects of adult progenitor cells for myocardial infarction: meta-analysis,” Expert Opinion on Biological Therapy, vol. 10, no. 5, pp. 667–680, 2010. View at Publisher · View at Google Scholar
  4. F. Cao, S. Lin, X. Xie et al., “In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery,” Circulation, vol. 113, no. 7, pp. 1005–1014, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Higuchi, M. Anton, K. Dumler et al., “Combined reporter gene PET and iron oxide MRI for monitoring survival and localization of transplanted cells in the rat heart,” Journal of Nuclear Medicine, vol. 50, no. 7, pp. 1088–1094, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. K. J. Blackwood, B. Lewden, R. G. Wells et al., “In vivo SPECT quantification of transplanted cell survival after engraftment using 111In-tropolone in infarcted canine myocardium,” Journal of Nuclear Medicine, vol. 50, no. 6, pp. 927–935, 2009. View at Publisher · View at Google Scholar
  7. M. A. Green and J. C. Huffman, “The molecular structure of indium oxine,” Journal of Nuclear Medicine, vol. 29, no. 3, pp. 417–420, 1988. View at Google Scholar · View at Scopus
  8. A. M. Peters, S. H. Saverymuttu, and H. J. Reavy, “Imaging of inflammation with indium-111 tropolonate labeled leukocytes,” Journal of Nuclear Medicine, vol. 24, no. 1, pp. 39–44, 1983. View at Google Scholar
  9. H. Iwasaki, A. Kawamoto, M. Ishikawa et al., “Dose-dependent contribution of CD34-positive cell transplantation to concurrent vasculogenesis and cardiomyogenesis for functional regenerative recovery after myocardial infarction,” Circulation, vol. 113, no. 10, pp. 1311–1325, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. Hare, J. H. Traverse, T. D. Henry et al., “A Randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction,” Journal of the American College of Cardiology, vol. 54, no. 24, pp. 2277–2286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Hou, E. A. S. Youssef, T. J. Brinton et al., “Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials,” Circulation, vol. 112, no. 9, supplement, pp. I150–I156, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. E. C. Perin and J. López, “Methods of stem cell delivery in cardiac diseases,” Nature Clinical Practice Cardiovascular Medicine, vol. 3, no. 1, supplement, pp. S110–S113, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. P. R. Vulliet, M. Greeley, S. M. Halloran, K. A. MacDonald, and M. D. Kittleson, “Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs,” Lancet, vol. 363, no. 9411, pp. 783–784, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. P. D. Stein, M. Marzilli, H. N. Sabbah, and T. Lee, “Systolic and diastolic pressure gradients within the left ventricular wall,” American Journal of Physiology, vol. 7, no. 5, pp. H625–H630, 1980. View at Google Scholar · View at Scopus
  15. M. P. Maxwell, D. J. Hearse, and D. M. Yellon, “Species variation in the coronary collateral circulation during regional myocardial ischaemia: a critical determinant of the rate of evolution and extent of myocardial infarction,” Cardiovascular Research, vol. 21, no. 10, pp. 737–746, 1987. View at Google Scholar · View at Scopus
  16. C. J. Teng, J. Luo, R. C. J. Chiu, and D. Shum-Tim, “Massive mechanical loss of microspheres with direct intramyocardial injection in the beating heart: implications for cellular cardiomyoplasty,” Journal of Thoracic and Cardiovascular Surgery, vol. 132, no. 3, pp. 628–632, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. A. J. Mitchell, E. Sabondjian, J. Sykes et al., “Comparison of initial cell retention and clearance kinetics after subendocardial or subepicardial injections of endothelial progenitor cells in a canine myocardial infarction model,” Journal of Nuclear Medicine, vol. 51, no. 3, pp. 413–417, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. C. L. Byrne, “Accelerating the EMML algorithm and related iterative algorithms by rescaled block-iterative methods,” IEEE Transactions on Image Processing, vol. 7, no. 1, pp. 100–109, 1998. View at Google Scholar · View at Scopus
  19. F. M. Bengel, V. Schachinger, and S. Dimmeler, “Cell-based therapies and imaging in cardiology,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 32, no. 2, supplement, pp. S404–S416, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Terrovitis, M. Stuber, A. Youssef et al., “Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart,” Circulation, vol. 117, no. 12, pp. 1555–1562, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. Li, Y. Suzuki, M. Huang et al., “Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects,” Stem Cells, vol. 26, no. 4, pp. 864–873, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Thompson, D. M. Wall, R. J. Hicks, and H. M. Prince, “In vivo tracking for cell therapies,” Quarterly Journal of Nuclear Medicine and Molecular Imaging, vol. 49, no. 4, pp. 339–348, 2005. View at Google Scholar · View at Scopus
  23. B. Doyle, B. J. Kemp, P. Chareonthaitawee et al., “Dynamic tracking during intracoronary injection ofF-FDG- labeled progenitor cell therapy for acute myocardial infarction,” Journal of Nuclear Medicine, vol. 48, no. 10, pp. 1708–1714, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Adonai, K. N. Nguyen, J. Walsh et al., “Ex vivo cell labeling with Cu-pyruvaldehyde-bis(N-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 5, pp. 3030–3035, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Zhou, D. H. Thomas, H. Qiao et al., “In vivo detection of stem cells grafted in infarcted rat myocardium,” Journal of Nuclear Medicine, vol. 46, no. 5, pp. 816–822, 2005. View at Google Scholar · View at Scopus
  26. J. E. Lowe, R. G. Cummings, D. H. Adams, and E. A. Hull Ryde, “Evidence that ischemic cell death begins in the subendocardium independent of variations in collateral flow or wall tension,” Circulation, vol. 68, no. 1, pp. 190–202, 1983. View at Google Scholar · View at Scopus
  27. J. A. Gascho, G. L. Copenhaver, and D. F. Heitjan, “Systolic thickening increases from subepicardium to subendocardium,” Cardiovascular Research, vol. 24, no. 10, pp. 777–780, 1990. View at Google Scholar · View at Scopus
  28. H. N. Sabbah, M. Marzilli, and P. D. Stein, “The relative role of subendocardium and subepicardium in left ventricular mechanics,” American Journal of Physiology, vol. 9, no. 6, pp. H920–H926, 1981. View at Google Scholar · View at Scopus
  29. R. J. Laham, M. Post, M. Rezaee et al., “Transendocardial and transepicardial intramyocardial fibroblast growth factor-2 administration: myocardial and tissue distribution,” Drug Metabolism and Disposition, vol. 33, no. 8, pp. 1101–1107, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. P. M. Grossman, Z. Han, M. Palasis, J. J. Barry, and R. J. Lederman, “Incomplete retention after direct myocardial injection,” Catheterization and Cardiovascular Interventions, vol. 55, no. 3, pp. 392–397, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Jin, H. Kong, R. Z. Stodilka et al., “Determining the minimum number of detectable cardiac-transplanted In-tropolone-labelled bone-marrow-derived mesenchymal stem cells by SPECT,” Physics in Medicine and Biology, vol. 50, no. 19, pp. 4445–4455, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. M. L. Thakur, A. W. Segal, L. Louis, M. J. Welch, J. Hopkins, and T. J. Peters, “Indium-111-labeled cellular blood components: mechanism of labeling and intracellular location in human neutrophils,” Journal of Nuclear Medicine, vol. 18, no. 10, pp. 1022–1026, 1977. View at Google Scholar · View at Scopus