Table of Contents
International Journal of Molecular Imaging
Volume 2011 (2011), Article ID 630813, 6 pages
http://dx.doi.org/10.1155/2011/630813
Research Article

Reduction of Collimator Correction Artefacts with Bayesian Reconstruction in Spect

1Department of Radiation Therapy, Vaasa Central Hospital, Hietalahdenkatu 2-4, 65100 Vaasa, Finland
2HERMES Medical Solutions, Skeppsbron 44, 11130 Stockholm, Sweden
3Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, P.O. Box 1777, 70211 Kuopio, Finland
4Niuvanniemi Hospital, 70211 Kuopio, Finland

Received 30 July 2010; Revised 29 September 2010; Accepted 29 October 2010

Academic Editor: Thomas Beyer

Copyright © 2011 Tuija Kangasmaa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. H. Lau, B. F. Hutton, and F. J. Beekman, “Choice of collimator for cardiac SPET when resolution compensation is included in iterative reconstruction,” European Journal of Nuclear Medicine, vol. 28, no. 1, pp. 39–47, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. H. C. Gifford, M. A. King, R. Glenn Wells, W. G. Hawkins, M. V. Narayanan, and P. H. Pretorius, “LROC analysis of detector-response compensation in SPECT,” IEEE Transactions on Medical Imaging, vol. 19, no. 5, pp. 463–473, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. E. C. Frey, K. L. Gilland, and B. M. W. Tsui, “Application of task-based measures of image quality to optimization and evaluation of three-dimensional reconstruction-based compensation methods in myocardial perfusion SPECT,” IEEE Transactions on Medical Imaging, vol. 21, no. 9, pp. 1040–1050, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. B. He, Y. Du, X. Song, W. P. Segars, and E. C. Frey, “A Monte Carlo and physical phantom evaluation of quantitative In-111 SPECT,” Physics in Medicine and Biology, vol. 50, no. 17, pp. 4169–4185, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. E. G. DePuey, R. Gadiraju, J. Clark, L. Thompson, F. Anstett, and S. C. Shwartz, “Ordered subset expectation maximization and wide beam reconstruction "half-time" gated myocardial perfusion SPECT functional imaging: a comparison to "full-time" filtered backprojection,” Journal of Nuclear Cardiology, vol. 15, no. 4, pp. 547–563, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. T. M. Bateman, G. V. Heller, A. I. McGhie et al., “Multicenter investigation comparing a highly efficient half-time stress-only attenuation correction approach against standard rest-stress Tc-99m SPECT imaging,” Journal of Nuclear Cardiology, vol. 16, no. 5, pp. 726–735, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. S. Liu and T. H. Farncombe, “Collimator-detector response compensation in quantitative SPECT reconstruction,” in Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 3955–3960, November 2007. View at Publisher · View at Google Scholar
  8. D. L. Snyder, M. I. Miller, L. J. Thomas, and D. G. Politte, “Noise and edge artefacts in maximum likelihood reconstruction for emission tomography,” IEEE Transactions on Medical Imaging, vol. 6, no. 3, pp. 228–238, 1987. View at Google Scholar · View at Scopus
  9. D. S. Lalush and B. M. W. Tsui, “Simulation evaluation of Gibbs prior distributions for use in maximum a posteriori SPECT reconstructions,” IEEE Transactions on Medical Imaging, vol. 11, no. 2, pp. 267–275, 1992. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. E. V. R. Di Bella, A. B. Barclay, R. L. Eisner, and R. W. Schafer, “A comparison of rotation-based methods for iterative reconstruction algorithms,” IEEE Transactions on Nuclear Science, vol. 43, no. 6, pp. 3370–3376, 1996. View at Google Scholar
  11. A. W. McCarthy and M. I. Miller, “Maximum likelhood SPECT in clinical computation times using mesh-connected parallel computers,” IEEE Transactions on Medical Imaging, vol. 10, no. 3, pp. 426–436, 1991. View at Publisher · View at Google Scholar · View at PubMed
  12. P. J. Green, “Bayesian reconstructions from emission tomography data using a modified EM algorithm,” IEEE Transactions on Medical Imaging, vol. 9, no. 1, pp. 84–93, 1990. View at Publisher · View at Google Scholar · View at PubMed
  13. S. Alenius and U. Ruotsalainen, “Generalization of median root prior reconstruction,” IEEE Transactions on Medical Imaging, vol. 21, no. 11, pp. 1413–1420, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. J. E. Bowsher, H. Yuan, L. W. Hedlund et al., “Utilizing MRI information to estimate F18-FDG distributions in rat flank tumors,” in Proceedings of the IEEE Nuclear Science Symposium Conference Record, pp. 2488–2492, October 2004.
  15. A. Atre, K. Vunckx, K. Baete, A. Reilhac, and J. Nuyts, “Evaluation of different MRI-based anatomical priors for PET brain imaging,” in Proceedings of the IEEE Nuclear Science Symposium Conference Record, pp. 2774–2780, October 2009. View at Publisher · View at Google Scholar
  16. C. Comtat, P. E. Kinahan, J. A. Fessler et al., “Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels,” Physics in Medicine and Biology, vol. 47, no. 1, pp. 1–20, 2002. View at Publisher · View at Google Scholar
  17. K. Baete, J. Nuyts, K. V. Laere et al., “Evaluation of anatomy based reconstruction for partial volume correction in brain FDG-PET,” NeuroImage, vol. 23, no. 1, pp. 305–317, 2004. View at Publisher · View at Google Scholar · View at PubMed