Table of Contents
International Journal of Molecular Imaging
Volume 2011, Article ID 714021, 9 pages
http://dx.doi.org/10.1155/2011/714021
Review Article

Diffusion MR Imaging of the Brain in Patients with Cancer

Department of Radiology, Section of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, FCT16.024, Unit 1482, Houston, TX 77030, USA

Received 1 June 2011; Revised 19 August 2011; Accepted 19 August 2011

Academic Editor: Weibo Cai

Copyright © 2011 J. Matthew Debnam and Dawid Schellingerhout. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Brown, “A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies,” Philosophical Magazine, vol. 4, pp. 161–173, 1828. View at Google Scholar
  2. A. Einstein, “Theoretical remarks on brownian motion,” Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie, vol. 13, pp. 41–42, 1907. View at Google Scholar
  3. T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a brownian particle,” Science, vol. 328, no. 5986, pp. 1673–1675, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. S. Warach, D. Chien, W. Li, M. Ronthal, and R. R. Edelman, “Fast magnetic resonance diffusion-weighted imaging of acute human stroke,” Neurology, vol. 42, no. 9, pp. 1717–1723, 1992. View at Google Scholar · View at Scopus
  5. A. G. Sorensen, F. S. Buonanno, R. G. Gonzalez et al., “Hyperacute stroke: evaluation with combined multisection diffusion-weighted and hemodynamically weighted echo-planar MR imaging,” Radiology, vol. 199, no. 2, pp. 391–401, 1996. View at Google Scholar · View at Scopus
  6. G. Schlaug, B. Siewert, A. Benfield, R. R. Edelman, and S. Warach, “Time course of the apparent diffusion coefficient (ADC) abnormality in human stroke,” Neurology, vol. 49, no. 1, pp. 113–119, 1997. View at Google Scholar · View at Scopus
  7. W. Reiche, V. Schuchardt, T. Hagen, K. A. Il'yasov, P. Billmann, and J. Weber, “Differential diagnosis of intracranial ring enhancing cystic mass lesions-Role of diffusion-weighted imaging (DWI) and diffusion-tensor imaging (DTI),” Clinical Neurology and Neurosurgery, vol. 112, no. 3, pp. 218–225, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. T. Ebisu, C. Tanaka, M. Umeda et al., “Discrimination of brain abscess from necrotic or cystic tumors by diffusion-weighted echo planar imaging,” Magnetic Resonance Imaging, vol. 14, no. 9, pp. 1113–1116, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. A. C. Guo, T. J. Cummings, R. C. Dash, and J. M. Provenzale, “Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics,” Radiology, vol. 224, no. 1, pp. 177–183, 2002. View at Google Scholar · View at Scopus
  10. F. Yamasaki, K. Kurisu, K. Satoh et al., “Apparent diffusion coefficient of human brain tumors at MR imaging,” Radiology, vol. 235, no. 3, pp. 985–991, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. Z. Rumboldt, D. L. A. Camacho, D. Lake, C. T. Welsh, and M. Castillo, “Apparent diffusion coefficients for differentiation of cerebellar tumors in children,” American Journal of Neuroradiology, vol. 27, no. 6, pp. 1362–1369, 2006. View at Google Scholar · View at Scopus
  12. R. D. Tien, G. J. Felsberg, H. Friedman, M. Brown, and J. MacFall, “MR imaging of high-grade cerebral gliomas: value of diffusion-weighted echoplanar pulse sequences,” American Journal of Roentgenology, vol. 162, no. 3, pp. 671–677, 1994. View at Google Scholar · View at Scopus
  13. Y. J. Kim, K. H. Chang, I. C. Song et al., “Brain abscess and necrotic or cystic brain tumor: discrimination with signal intensity on diffusion-weighted MR imaging,” American Journal of Roentgenology, vol. 171, no. 6, pp. 1487–1490, 1998. View at Google Scholar · View at Scopus
  14. B. Desprechins, T. Stadnik, G. Koerts, W. Shabana, C. Breucq, and M. Osteaux, “Use of diffusion-weighted MR imaging in differential diagnosis between intracerebral necrotic tumors and cerebral abscesses,” American Journal of Neuroradiology, vol. 20, no. 7, pp. 1252–1257, 1999. View at Google Scholar · View at Scopus
  15. K. Noguchi, N. Watanabe, T. Nagayoshi et al., “Role of diffusion-weighted echo-planar MRI in distinguishing between brain abscess and tumour: a preliminary report,” Neuroradiology, vol. 41, no. 3, pp. 171–174, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Holtås, B. Geijer, L. G. Strömblad, P. Maly-Sundgren, and I. M. Burtscher, “A ring-enhancing metastasis with central high signal on diffusion-weighted imaging and low apparent diffusion coefficients,” Neuroradiology, vol. 42, no. 11, pp. 824–827, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Hartmann, O. Jansen, S. Heiland, C. Sommer, K. Münkel, and K. Sartor, “Restricted diffusion within ring enhancement is not pathognomonic for brain abscess,” American Journal of Neuroradiology, vol. 22, no. 9, pp. 1738–1742, 2001. View at Google Scholar · View at Scopus
  18. G. A. Tung, P. Evangelista, J. M. Rogg, and J. A. Duncan, “Diffusion-weighted MR imaging of rim-enhancing brain masses: is markedly decreased water diffusion specific for brain abscess?” American Journal of Roentgenology, vol. 177, no. 3, pp. 709–712, 2001. View at Google Scholar · View at Scopus
  19. J. S. Reddy, A. M. Mishra, S. Behari et al., “The role of diffusion-weighted imaging in the differential diagnosis of intracranial cystic mass lesions: a report of 147 lesions,” Surgical Neurology, vol. 66, no. 3, pp. 246–250, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. R. N. Al-Okaili, J. Krejza, J. H. Woo et al., “Intraaxial brain masses: MR imaging-based diagnostic strategy—initial experience,” Radiology, vol. 243, no. 2, pp. 539–550, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. S. Wang, S. Kim, S. Chawla et al., “Differentiation between glioblastomas and solitary brain metastases using diffusion tensor imaging,” NeuroImage, vol. 44, no. 3, pp. 653–660, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. C. H. Toh, M. Castillo, A. M. C. Wong et al., “Primary cerebral lymphoma and glioblastoma multiforme: differences in diffusion characteristics evaluated with diffusion tensor imaging,” American Journal of Neuroradiology, vol. 29, no. 3, pp. 471–475, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. A. Batra and R. P. Tripathi, “Atypical diffusion-weighted magnetic resonance findings in glioblastoma multiforme,” Australasian Radiology, vol. 48, no. 3, pp. 388–391, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. C. H. Toh, Y. L. Chen, T. C. Hsieh, S. M. Jung, H. F. Wong, and S. H. Ng, “Glioblastoma multiforme with diffusion-weighted magnetic resonance imaging characteristics mimicking primary brain lymphoma: case report,” Journal of Neurosurgery, vol. 105, no. 1, pp. 132–135, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. D. Le Bihan, “Looking into the functional architecture of the brain with diffusion MRI,” Nature Reviews Neuroscience, vol. 4, no. 6, pp. 469–480, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. M. E. Moseley, Y. Cohen, J. Kucharczyk et al., “Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system,” Radiology, vol. 176, no. 2, pp. 439–445, 1990. View at Google Scholar · View at Scopus
  27. T. Beppu, T. Inoue, Y. Shibata et al., “Measurement of fractional anisotropy using diffusion tensor MRI in supratentorial astrocytic tumors,” Journal of Neuro-Oncology, vol. 63, no. 2, pp. 109–116, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Kinoshita, N. Hashimoto, T. Goto et al., “Fractional anisotropy and tumor cell density of the tumor core show positive correlation in diffusion tensor magnetic resonance imaging of malignant brain tumors,” NeuroImage, vol. 43, no. 1, pp. 29–35, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. C. F. Westin, S. E. Maier, H. Mamata, A. Nabavi, F. A. Jolesz, and R. Kikinis, “Processing and visualization for diffusion tensor MRI,” Medical Image Analysis, vol. 6, no. 2, pp. 93–108, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Ozarslan, T. M. Shepherd, B. C. Vemuri, S. J. Blackband, and T. H. Mareci, “Fast orientation mapping from HARDI,” Medical Image Computing and Computer-Assisted Intervention, vol. 8, no. 1, pp. 156–163, 2005. View at Google Scholar · View at Scopus
  31. I. Aganj, C. Lenglet, G. Sapiro, E. Yacoub, K. Ugurbil, and N. Harel, “Multiple Q-shell ODF reconstruction in Q-ball imaging,” Medical Image Computing and Computer-Assisted Intervention, vol. 12, no. 2, pp. 423–431, 2009. View at Google Scholar · View at Scopus
  32. C. Nimsky, O. Ganslandt, P. Hastreiter et al., “Intraoperative diffusion-tensor MR imaging: shifting of white matter tracts during neurosurgical procedures—initial experience,” Radiology, vol. 234, no. 1, pp. 218–225, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. W. B. Pope, H. J. Kim, J. Huo et al., “Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment,” Radiology, vol. 252, no. 1, pp. 182–189, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. W. B. Pope, A. Lai, R. Mehta et al., “Apparent diffusion coefficient histogram analysis stratifies progression-free survival in newly diagnosed bevacizumab-treated glioblastoma,” American Journal of Neuroradiology, vol. 32, no. 5, pp. 882–889, 2011. View at Publisher · View at Google Scholar · View at PubMed
  35. R. Murakami, T. Sugahara, H. Nakamura et al., “Malignant supratentorial astrocytoma treated with postoperative radiation therapy: prognostic value of pretreatment quantitative diffusion-weighted MR imaging,” Radiology, vol. 243, no. 2, pp. 493–499, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. H. Huang, J. Held-Feindt, R. Buhl, H. M. Mehdorn, and R. Mentlein, “Expression of VEGF and its receptors in different brain tumors,” Neurological Research, vol. 27, no. 4, pp. 371–377, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. I. Fischer, J. P. Gagner, M. Law, E. W. Newcomb, and D. Zagzag, “Angiogenesis in gliomas: biology and molecular pathophysiology,” Brain Pathology, vol. 15, no. 4, pp. 297–310, 2005. View at Google Scholar · View at Scopus
  38. D. J. Hicklin and L. M. Ellis, “Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis,” Journal of Clinical Oncology, vol. 23, no. 5, pp. 1011–1027, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. T. N. Kreisl, L. Kim, K. Moore et al., “Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma,” Journal of Clinical Oncology, vol. 27, no. 5, pp. 740–745, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. H. S. Friedman, M. D. Prados, P. Y. Wen et al., “Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma,” Journal of Clinical Oncology, vol. 27, no. 28, pp. 4733–4740, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. D. J. Brat and E. G. Van Meir, “Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma,” Laboratory Investigation, vol. 84, no. 4, pp. 397–405, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. W. B. Pope, A. Lai, P. Nghiemphu, P. Mischel, and T. F. Cloughesy, “MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy,” Neurology, vol. 66, no. 8, pp. 1258–1260, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. Y. Mardor, Y. Roth, A. Ocherashvilli et al., “Pretreatment prediction of brain tumors' response to radiation therapy using high b-value diffusion-weighted MRI,” Neoplasia, vol. 6, no. 2, pp. 136–142, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. T. Sugahara, Y. Korogi, M. Kochi et al., “Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas,” Journal of Magnetic Resonance Imaging, vol. 9, no. 1, pp. 53–60, 1999. View at Publisher · View at Google Scholar
  45. J. Chen, J. Xia, Y. C. Zhou et al., “Correlation between magnetic resonance diffusion weighted imaging and cell density in astrocytoma,” Zhonghua Zhong Liu za Zhi, vol. 27, no. 5, pp. 309–311, 2005. View at Google Scholar
  46. N. Tomura, K. Narita, J. I. Izumi et al., “Diffusion changes in a tumor and peritumoral tissue after stereotactic irradiation for brain tumors: possible prediction of treatment response,” Journal of Computer Assisted Tomography, vol. 30, no. 3, pp. 496–500, 2006. View at Publisher · View at Google Scholar
  47. A. M. Babsky, S. K. Hekmatyar, H. Zhang, J. L. Solomon, and N. Bansal, “Predicting and monitoring response to chemotherapy by 1,3-bis(2- chloroethyl)-1-nitrosourea in subcutaneously implanted 9L glioma using the apparent diffusion coefficient of water and 23Na MRI,” Journal of Magnetic Resonance Imaging, vol. 24, no. 1, pp. 132–139, 2006. View at Publisher · View at Google Scholar · View at PubMed
  48. J. Oh, R. G. Henry, A. Pirzkall et al., “Survival analysis in patients with glioblastoma multiforme: predictive value of choline-to-N-acetylaspartate index, apparent diffusion coefficient, and relative cerebral blood volume,” Journal of Magnetic Resonance Imaging, vol. 19, no. 5, pp. 546–554, 2004. View at Publisher · View at Google Scholar · View at PubMed