Table of Contents
International Journal of Molecular Imaging
Volume 2011 (2011), Article ID 813028, 9 pages
http://dx.doi.org/10.1155/2011/813028
Review Article

SPECT Imaging of Epilepsy: An Overview and Comparison with F-18 FDG PET

1Division of Nuclear Medicine, Department of Radiology, Children's Hospital of Pittsburgh and The University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
2Division of Nuclear Medicine, Department of Radiology, University of Pittsburgh Medical Center, PET Facility, B-932, 200 Lothrop Street, Pittsburgh, PA 15213, USA

Received 20 August 2010; Accepted 9 May 2011

Academic Editor: Abass Alavi

Copyright © 2011 Sunhee Kim and James M. Mountz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Engel Jr., “Outcome with respect to epileptic seizures,” in Surgical Treatment of the Epilepsies, J. Engel Jr., Ed., pp. 553–571, Raven Press, New York, NY, USA, 1987. View at Google Scholar
  2. B. L. Holman and M. D. Devous, “Functional brain SPECT: the emergence of a powerful clinical method,” Journal of Nuclear Medicine, vol. 33, no. 10, pp. 1888–1904, 1992. View at Google Scholar · View at Scopus
  3. N. A. Lassen and R. G. Blasberg, “Technetium-99m-d,l-HM-PAO, the development of a new class of Tc-labeled tracers: an overview,” Journal of Cerebral Blood Flow and Metabolism, vol. 8, no. 6, pp. S1–S3, 1988. View at Google Scholar · View at Scopus
  4. R. C. Walovitch, T. C. Hill, S. T. Garrity et al., “Characterization of technetium-99m-L,L-ECD for brain perfusion imaging, part 1: pharmacology of technetium-99m ECD in nonhuman primates,” Journal of Nuclear Medicine, vol. 30, no. 11, pp. 1892–1901, 1989. View at Google Scholar · View at Scopus
  5. G. Deutsch and J. M. Mountz, “Neuroimaging evidence of diaschisis and reorganization in stroke recovery,” in International Handbook of Neuropsychological Rehabilitation, A. L. Christensen and B. Uzzell, Eds., pp. 33–63, Plenum, New York, NY, USA, 2000. View at Google Scholar
  6. D. F. Cikrit, M. C. Dalsing, P. S. Harting et al., “Cerebral vascular reactivity assessed with acetazolamide single photon emission computer tomography scans before and after carotid endarterectomy,” American Journal of Surgery, vol. 174, no. 2, pp. 193–197, 1997. View at Publisher · View at Google Scholar
  7. J. L. Moretti, G. Defer, L. Cinotti et al., “Comparative tomoscintigraphic study of strokes using ECD Tc-99m,HMPAO Tc-99m and IMP I-123, preliminary results,” European Journal of Nuclear Medicine, vol. 14, p. 311, 1988. View at Google Scholar
  8. J. Léveillé, G. Demonceau, and R. C. Walovitch, “Intrasubject comparison between technitium-99m-ECD and technetium-99m-HMPAO in healthy human subjects,” Journal of Nuclear Medicine, vol. 33, pp. 480–484, 1992. View at Google Scholar
  9. A. Castagnoli, N. Borsato, A. Bruno et al., “SPECT brain imaging in chronic stroke and dementia: a comparison of Tc-99m-ECD to Tc- B99m-HMPAO,” in Cerebral Ischemia and Dementia, A. Hartmann, S. Hoyer, and W. Kuschinski, Eds., pp. 327–333, Springer, Stuttgart, Germany, 1991. View at Google Scholar
  10. A. Bruno, F. Dosio, R. Benti et al., “Evaluation of a new brain perfusion tracer in humans,” European Journal of Nuclear Medicine, vol. 16, p. S187, 1990. View at Google Scholar
  11. A. R. Andersen, “99mTc-D,L-hexamethylene-propyleneamine oxime (99mTc-HMPAO): basic kinetic studies of a tracer of cerebral blood flow,” Cerebrovascular and Brain Metabolism Reviews, vol. 1, no. 4, pp. 288–318, 1989. View at Google Scholar · View at Scopus
  12. D. S. Lee, S. K. Lee, Y. K. Kim et al., “Superiority of HMPAO ictal SPECT to ECD ictal SPECT in localizing the epileptogenic zone,” Epilepsia, vol. 43, no. 3, pp. 263–269, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. M. D'Asseler, M. Koole, I. Lemahieu et al., “Recent and future evolutions in NeuroSPECT with particular emphasis on the synergistic use and fusion of imaging modalities,” Acta Neurologica Belgica, vol. 97, no. 3, pp. 154–162, 1997. View at Google Scholar · View at Scopus
  14. D. H. Ingvar, “Epilepsy related to cerebral blood flow and metabolism,” Acta Psychiatrica Scandinavica. Supplementum, vol. 313, pp. 21–26, 1984. View at Google Scholar
  15. D. E. Kuhl, J. Engel Jr., M. E. Phelps, and C. Selin, “Epileptic patterns of local cerebral metabolism and perfusion in humans determined by emission computed tomography of 18FDG and 13NH3,” Annals of Neurology, vol. 8, no. 4, pp. 348–360, 1980. View at Google Scholar
  16. S. Lavy, E. Melamed, Z. Portnoy, and A. Carmon, “Interictal regional cerebral blood flow in patients with partial seizures,” Neurology, vol. 26, pp. 418–422, 1976. View at Google Scholar
  17. M. D. Devous Sr., R. A. Thisted, G. F. Morgan, R. F. Leroy, and C. C. Rowe, “SPECT brain imaging in epilepsy: a meta-analysis,” Journal of Nuclear Medicine, vol. 39, no. 2, pp. 285–293, 1998. View at Google Scholar · View at Scopus
  18. H. W. Lee, S. B. Hong, and W. S. Tae, “Opposite ictal perfusion patterns of subtracted SPECT: hyperperfusion and hypoperfusion,” Brain, vol. 123, no. 10, pp. 2150–2159, 2000. View at Google Scholar · View at Scopus
  19. T. J. O'Brien, E. L. So, B. P. Mullan et al., “Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus,” Neurology, vol. 50, no. 2, pp. 445–454, 1998. View at Google Scholar · View at Scopus
  20. I. G. Zubal, S. S. Spencer, K. Imam et al., “Difference images calculated from ictal and interictal technetium-99m- HMPAO SPECT scans of epilepsy,” Journal of Nuclear Medicine, vol. 36, no. 4, pp. 684–689, 1995. View at Google Scholar · View at Scopus
  21. O. N. Markand, S. S. Spencer, and A. R. Andersen, “SPECT in epilepsy,” Journal of Neuroimaging, vol. 5, no. 1, supplement, pp. S23–S33, 1995. View at Google Scholar · View at Scopus
  22. S. Lavy, E. Melamed, Z. Portnoy, and A. Carmon, “Interictal regional cerebral blood flow in patients with partial seizures,” Neurology, vol. 26, pp. 418–422, 1976. View at Google Scholar
  23. O. N. Markand, S. S. Spencer, and A. R. Anderson, “SPECT in epilepsy,” Journal of Neuroimaging, vol. 5, supplement 1, pp. S23–S33, 1995. View at Google Scholar
  24. W. D. Gaillard, S. Fazilat, S. White et al., “Interictal metabolism and blood flow are uncoupled in temporal lobe cortex of patients with complex partial epilepsy,” Neurology, vol. 45, no. 10, pp. 1841–1847, 1995. View at Google Scholar
  25. R. C. Knowlton, N. D. Lawn, J. M. Mountz, and R. I. Kuzniecky, “Ictal SPECT analysis in epilepsy: subtraction and statistical parametric mapping techniques,” Neurology, vol. 63, no. 1, pp. 10–15, 2004. View at Google Scholar · View at Scopus
  26. P. S. Conti, “Introduction to imaging brain tumor metabolism with positron emission tomography (PET),” Cancer Investigation, vol. 13, no. 2, pp. 244–259, 1995. View at Google Scholar
  27. A. Fois, “Infantile spasms that are associated with multifocal cortical dysplasia,” Italian Journal of Pediatrics, vol. 36, article 15, 2010. View at Google Scholar
  28. D. Delbeke, S. K. Lawrence, B. W. Abou-Khalil, B. Blumenkopf, and R. M. Kessler, “Postsurgical outcome of patients with uncontrolled complex partial seizures and temporal lobe hypometabolism on FDG-positron emission tomography,” Investigative Radiology, vol. 31, no. 5, pp. 261–266, 1996. View at Google Scholar · View at Scopus
  29. W. H. Theodore, S. Sato, C. V. Kufta, W. D. Gaillard, and K. Kelley, “FDG-positron emission tomography and invasive EEG: seizure focus detection and surgical outcome,” Epilepsia, vol. 38, no. 1, pp. 81–86, 1997. View at Publisher · View at Google Scholar
  30. T. R. Henry, J. C. Mazziotta, and J. Engel Jr., “Interictal metabolic anatomy of mesial temporal lobe epilepsy,” Archives of Neurology, vol. 50, no. 6, pp. 582–589, 1993. View at Google Scholar
  31. W. H. Theodore, “Positron emission tomography in the evaluation of seizure disorders,” Neuroscience News, vol. 1, pp. 18–22, 1998. View at Google Scholar
  32. S. S. Spencer, “The relative contributions of MRI, SPECT, and PET imaging in epilepsy,” Epilepsia, vol. 35, supplement 6, pp. S72–S89, 1994. View at Google Scholar
  33. D. B. Leiderman, M. Balish, S. Sato et al., “Comparison of PET measurements of cerebral blood flow and glucose metabolism for the localization of human epileptic foci,” Epilepsy Research, vol. 13, no. 2, pp. 153–157, 1992. View at Publisher · View at Google Scholar
  34. G. R. Fink, G. Pawlik, H. Stefan, U. Pietrzyk, K. Wienhard, and W. D. Heiss, “Temporal lobe epilepsy: evidence for interictal uncoupling of blood flow and glucose metabolism in temporomesial structures,” Journal of the Neurological Sciences, vol. 137, no. 1, pp. 28–34, 1996. View at Publisher · View at Google Scholar
  35. I. G. Zubal, R. A. Avery, R. Stokking et al., “Ratio-images calculated from interictal positron emission tomography and single-photon emission computed tomography for quantification of the uncoupling of brain metabolism and perfusion in epilepsy,” Epilepsia, vol. 41, no. 12, pp. 1560–1566, 2000. View at Google Scholar · View at Scopus
  36. K. Buch, H. Blumenfeld, S. Spencer, E. Novotny, and I. G. Zubal, “Evaluating the accuracy of perfusion/metabolism (SPET/PET) ratio in seizure localization,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 35, no. 3, pp. 579–588, 2008. View at Publisher · View at Google Scholar
  37. S. S. Ho, S. F. Berkovic, S. U. Berlangieri et al., “Comparison of ictal SPECT and interictal PET in the presurgical evaluation of temporal lobe epilepsy,” Annals of Neurology, vol. 37, no. 6, pp. 738–745, 1995. View at Publisher · View at Google Scholar · View at Scopus
  38. V. Bouilleret, M. P. Valenti, E. Hirsch, F. Semah, and I. J. Namer, “Correlation between PET and SISCOM in temporal lobe epilepsy,” Journal of Nuclear Medicine, vol. 43, no. 8, pp. 991–998, 2002. View at Google Scholar
  39. S. I. Hwang, J. H. Kim, S. W. Park et al., “Comparative analysis of MR imaging, positron emission tomography, and ictal single-photon emission CT in patients with neocortical epilepsy,” American Journal of Neuroradiology, vol. 22, no. 5, pp. 937–946, 2001. View at Google Scholar · View at Scopus