Table of Contents
International Journal of Molecular Imaging
Volume 2012 (2012), Article ID 175803, 6 pages
http://dx.doi.org/10.1155/2012/175803
Review Article

The Role of Fluorine-18-Fluorodeoxyglucose Positron Emission Tomography in Evaluating the Response to Treatment in Patients with Multiple Myeloma

1Department of Bioimaging and Radiological Sciences, Institute of Nuclear Medicine, Università Cattolica del Sacro Cuore, Largo Gemelli 8, 00168 Rome, Italy
2Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
3School of Biotechnology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy

Received 3 June 2012; Accepted 3 July 2012

Academic Editor: Hongming Zhuang

Copyright © 2012 Carmelo Caldarella et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Dimopoulos and E. Terpos, “Multiple myeloma,” Annals of Oncology, vol. 21, supplement 7, pp. vii143–vii150, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. R. A. Kyle and S. V. Rajkumar, “Multiple myeloma,” The New England Journal of Medicine, vol. 351, no. 18, pp. 1060–1077, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. D. van Lammeren-Venema, J. C. Regelink, I. I. Riphagen et al., “18F-fluoro-deoxyglucose positron emission tomography in assessment of myeloma-related bone disease: a systematic review,” Cancer, vol. 118, no. 8, pp. 1971–1981, 2012. View at Google Scholar
  4. International Myeloma Working Group, “Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group,” British Journal of Haematology, vol. 121, no. 5, pp. 749–757, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Nanni, E. Zamagni, M. Farsad et al., “Role of 18F-FDG PET/CT in the assessment of bone involvement in newly diagnosed multiple myeloma: preliminary results,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 33, no. 5, pp. 525–531, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Fonti, B. Salvatore, M. Quarantelli et al., “18F-FDG PET/CT, 99mTc-MIBI, and MRI in evaluation of patients with multiple myeloma,” Journal of Nuclear Medicine, vol. 49, no. 2, pp. 195–200, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. B. G. Durie, A. D. Waxman, A. D'Agnolo, and C. M. Williams, “Whole-body 18F-FDG pet identifies high-risk myeloma,” Journal of Nuclear Medicine, vol. 43, no. 11, pp. 1457–1463, 2002. View at Google Scholar · View at Scopus
  8. R. Haznedar, S. Z. AkI, Ö. U. Akdemir et al., “Value of 18F-fluorodeoxyglucose uptake in positron emission tomography/computed tomography in predicting survival in multiple myeloma,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 38, no. 6, pp. 1046–1053, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Jadvar and P. S. Conti, “Diagnostic utility of FDG PET in multiple myeloma,” Skeletal Radiology, vol. 31, no. 12, pp. 690–694, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Zamagni, C. Nanni, F. Patriarca et al., “A prospective comparison of 18F-fluorodeoxyglucose positron emission tomography-computed tomography, magnetic resonance imaging and whole-body planar radiographs in the assessment of bone disease in newly diagnosed multiple myeloma,” Haematologica, vol. 92, no. 1, pp. 50–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. T. B. Bartel, J. Haessler, T. L. Brown et al., “18F-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma,” Blood, vol. 114, no. 10, pp. 2068–2076, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Dimitrakopoulou-Strauss, M. Hoffmann, R. Bergner, M. Uppenkamp, U. Haberkorn, and L. G. Strauss, “Prediction of progression-free survival in patients with multiple myeloma following anthracycline-based chemotherapy based on dynamic FDG-PET,” Clinical Nuclear Medicine, vol. 34, no. 9, pp. 576–584, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Zamagni, F. Patriarca, C. Nanni et al., “Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation,” Blood, vol. 118, no. 23, pp. 5989–5995, 2011. View at Google Scholar
  14. T. Derlin, C. Weber, C. R. Habermann et al., “18F-FDG PET/CT for detection and localization of residual or recurrent disease in patients with multiple myeloma after stem cell transplantation,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 39, no. 3, pp. 493–500, 2012. View at Google Scholar
  15. L. Mileshkin, R. Blum, J. F. Seymour, A. Patrikeos, R. J. Hicks, and H. M. Prince, “A comparison of fluorine-18 fluorodeoxyglucose PET and technetium-99m sestamibi in assessing patients with multiple myeloma,” European Journal of Haematology, vol. 72, no. 1, pp. 32–37, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. M. A. Bredella, L. Steinbach, G. Caputo, G. Segall, and R. Hawkins, “Value of FDG PET in the assessment of patients with multiple myeloma,” American Journal of Roentgenology, vol. 184, no. 4, pp. 1199–1204, 2005. View at Google Scholar · View at Scopus
  17. P. J. Kim, R. J. Hicks, A. Wirth et al., “Impact of 18F-fluorodeoxyglucose positron emission tomography before and after definitive radiation therapy in patients with apparently solitary plasmacytoma,” International Journal of Radiation Oncology Biology Physics, vol. 74, no. 3, pp. 740–746, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Sager, N. Ergül, H. Ciftci, G. Cetin, S. I. Güner, and T. F. Cermik, “The value of FDG PET/CT in the initial staging and bone marrow involvement of patients with multiple myeloma,” Skeletal Radiology, vol. 40, no. 7, pp. 843–847, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Barlogie, E. Anaissie, F. van Rhee et al., “Incorporating bortezomib into upfront treatment for multiple myeloma: early results of total therapy 3,” British Journal of Haematology, vol. 138, no. 2, pp. 176–185, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. B. G. Durie, J. L. Harousseau, J. S. Miguel et al., “International uniform response criteria for multiple myeloma,” Leukemia, vol. 20, no. 9, pp. 1467–1473, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Blade, D. Samson, D. Reece et al., “Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation,” British Journal of Haematology, vol. 102, no. 5, pp. 1115–1123, 1998. View at Publisher · View at Google Scholar · View at Scopus