Table of Contents
International Journal of Molecular Imaging
Volume 2012, Article ID 580717, 10 pages
Research Article

Reproducible Analysis of Rat Brain PET Studies Using an Additional [18F]NaF Scan and an MR-Based ROI Template

1Department of Nuclear Medicine & PET Research, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
2Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona 74100, Israel

Received 28 June 2012; Accepted 13 August 2012

Academic Editor: Domenico Rubello

Copyright © 2012 Hans J. C. Buiter et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Background. An important step in the analysis of positron emission tomography (PET) studies of the brain is the definition of regions of interest (ROI). Image coregistration, ROI analysis, and quantification of brain PET data in small animals can be observer dependent. The purpose of this study was to investigate the feasibility of ROI analysis based on a standard MR template and an additional [18F]NaF scan. Methods. [18F]NaF scans of 10 Wistar rats were coregistered with a standard MR template by 3 observers and derived transformation matrices were applied to corresponding [11C]AF150(S) images. Uptake measures were derived for several brain regions delineated using the MR template. Overall agreement between the 3 observers was assessed by interclass correlation coefficients (ICC) of uptake data. In addition, [11C]AF150(S) ROI data were compared with ex vivo biodistribution data. Results. For all brain regions, ICC analysis showed excellent agreement between observers. Reproducibility, estimated by calculation of standard deviation of the between-observer differences, was demonstrated by an average of 17% expressed as coefficient of variation. Uptake of [11C]AF150(S) derived from ROI analysis closely matched ex vivo biodistribution data. Conclusions. The proposed method provides a reproducible and tracer-independent method for ROI analysis of rat brain PET data.