Table of Contents
International Journal of Molecular Imaging
Volume 2012, Article ID 580717, 10 pages
http://dx.doi.org/10.1155/2012/580717
Research Article

Reproducible Analysis of Rat Brain PET Studies Using an Additional [18F]NaF Scan and an MR-Based ROI Template

1Department of Nuclear Medicine & PET Research, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
2Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona 74100, Israel

Received 28 June 2012; Accepted 13 August 2012

Academic Editor: Domenico Rubello

Copyright © 2012 Hans J. C. Buiter et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. C. Mazziotta, A. W. Toga, A. Evans, P. Fox, and J. Lancaster, “A probabilistic atlas of the human brain: theory and rationale for its development: the International Consortium for Brain Mapping (ICBM),” NeuroImage, vol. 2, no. 2, part 1, pp. 89–101, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. K. J. Black, J. M. Koller, A. Z. Snyder, and J. S. Perlmutter, “Template images for nonhuman primate neuroimaging: 2. Macaque,” NeuroImage, vol. 14, no. 3, pp. 744–748, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Andersen, H. Watanabe, C. Bjarkam, E. H. Danielsen, and P. Cumming, “Pig brain stereotaxic standard space: mapping of cerebral blood flow normative values and effect of MPTP-lesioning,” Brain Research Bulletin, vol. 66, no. 1, pp. 17–29, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Svarer, K. Madsen, S. G. Hasselbalch et al., “MR-based automatic delineation of volumes of interest in human brain PET images using probability maps,” NeuroImage, vol. 24, no. 4, pp. 969–979, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Fujita, S. S. Zoghbi, M. S. Crescenzo et al., “Quantification of brain phosphodiesterase 4 in rat with (R)-[11C]Rolipram-PET,” NeuroImage, vol. 26, no. 4, pp. 1201–1210, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Kuntner, A. L. Kesner, M. Bauer et al., “Limitations of small animal PET imaging with [18F]FDDNP and FDG for quantitative studies in a transgenic mouse model of alzheimer's disease,” Molecular Imaging and Biology, vol. 11, no. 4, pp. 236–240, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Doorduin, H. C. Klein, J. R. de Jong, R. A. Dierckx, and E. F. J. de Vries, “Evaluation of [11C]-DAA1106 for imaging and quantification of neuroinflammation in a rat model of herpes encephalitis,” Nuclear Medicine and Biology, vol. 37, no. 1, pp. 9–15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. D. L. Alexoff, P. Vaska, D. Marsteller et al., “Reproducibility of 11C-raclopride binding in the rat brain measured with the microPET R4: effects of scatter correction and tracer specific activity,” Journal of Nuclear Medicine, vol. 44, no. 5, pp. 815–822, 2003. View at Google Scholar · View at Scopus
  9. G. J. Topping, K. Dinelle, R. Kornelsen, S. McCormick, J. E. Holden, and V. Sossi, “Positron emission tomography kinetic modeling algorithms for small animal dopaminergic system imaging,” Synapse, vol. 64, no. 3, pp. 200–208, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Casteels, P. Vermaelen, J. Nuyts et al., “Construction and evaluation of multitracer small-animal PET probabilistic atlases for voxel-based functional mapping of the rat brain,” Journal of Nuclear Medicine, vol. 47, no. 11, pp. 1858–1866, 2006. View at Google Scholar · View at Scopus
  11. J. F. Volker, H. C. Hodge, H. J. Wilson et al., “The adsorption of fluorides by enamel, dentin, bone, and hydroxyapatite as shown by the radioactive isotope,” Journal of Biological Chemistry, vol. 134, no. 2, pp. 543–548, 1940. View at Google Scholar
  12. A. S. Posner, E. D. Eanes, R. A. Harper, and I. Zipkin, “X-ray diffraction analysis of the effect of fluoride on human bone apatite,” Archives of Oral Biology, vol. 8, no. 4, pp. 549–570, 1963. View at Google Scholar · View at Scopus
  13. M. Scarpa, F. Vianello, A. Rigo, P. Viglino, F. Bracco, and L. Battistin, “Uptake and life time of fluoride ion in rats by 19F-NMR,” Magnetic Resonance Imaging, vol. 11, no. 5, pp. 697–703, 1993. View at Publisher · View at Google Scholar · View at Scopus
  14. H. J. C. Buiter, J. E. Leysen, R. C. Schuit et al., “Radiosynthesis and biological evaluation of the M1 muscarinic acetylcholine receptor agonist ligand [11C]AF150(S),” Journal of Labelled Compounds and Radiopharmaceuticals, vol. 55, no. 7, pp. 264–273, 2012. View at Google Scholar
  15. H. W. A. M. De Jong, F. H. P. Van Velden, R. W. Kloet, F. L. Buijs, R. Boellaard, and A. A. Lammertsma, “Performance evaluation of the ECAT HRRT: an LSO-LYSO double layer high resolution, high sensitivity scanner,” Physics in Medicine and Biology, vol. 52, no. 5, article 019, pp. 1505–1526, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. F. H. P. Van Velden, R. W. Kloet, B. N. M. Van Berckel, A. A. Lammertsma, and R. Boellaard, “Accuracy of 3-dimensional reconstruction algorithms for the high-resolution research tomograph,” Journal of Nuclear Medicine, vol. 50, no. 1, pp. 72–80, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. A. M. Loening and S. S. Gambhir, “AMIDE: a completely free system for medical imaging data analysis,” The Journal of Nuclear Medicine, vol. 42, no. 5, p. 192, 2001. View at Google Scholar
  18. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Elsevier, Amsterdam, 6th edition, 2007.
  19. G. R. DiResta, J. Lee, and E. Arbit, “Measurement of brain tissue specific gravity using pycnometry,” Journal of Neuroscience Methods, vol. 39, no. 3, pp. 245–251, 1991. View at Publisher · View at Google Scholar · View at Scopus
  20. J. R. Landis and G. G. Koch, “The measurement of observer agreement for categorical data,” Biometrics, vol. 33, no. 1, pp. 159–174, 1977. View at Google Scholar · View at Scopus
  21. D. C. Mash and L. T. Potter, “Autoradiographic localization of M1 and M2 muscarine receptors in the rat brain,” Neuroscience, vol. 19, no. 2, pp. 551–564, 1986. View at Google Scholar · View at Scopus
  22. S. P. Hume, A. A. Lammertsma, R. Myers et al., “The potential of high-resolution positron emission tomography to monitor striatal dopaminergic function in rat models of disease,” Journal of Neuroscience Methods, vol. 67, no. 2, pp. 103–112, 1996. View at Publisher · View at Google Scholar · View at Scopus