Table of Contents
International Journal of Molecular Imaging
Volume 2013 (2013), Article ID 426961, 13 pages
http://dx.doi.org/10.1155/2013/426961
Research Article

In Vivo Tracking of Murine Adipose Tissue-Derived Multipotent Adult Stem Cells and Ex Vivo Cross-Validation

1Optical Imaging Laboratory, Cluster in Biomedicine (CBM scrl), 34149 Trieste, Italy
2Department of Cardiology, University of Ferrara, Salvatore Maugeri Foundation, IRCCS, 44100 Ferrara, Italy
3VisualSonics Inc., Toronto, ON, Canada M4N 3N1
4Centro Interdipartimentale di Medicina Rigenerativa, University of Udine, 33100 Udine, Italy
5Ephoran Multi-Imaging Solutions, 10010 Colleretto Giacosa, Torino, Italy

Received 12 October 2012; Accepted 23 November 2012

Academic Editor: Adriaan A. Lammertsma

Copyright © 2013 Chiara Garrovo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. J. Sutton, T. D. Henning, B. J. Pichler, C. Bremer, and H. E. Daldrup-Link, “Cell tracking with optical imaging,” European Radiology, vol. 18, no. 10, pp. 2021–2032, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Biffi, C. Garrovo, P. Macor et al., “In vivo biodistribution and lifetime analysis of Cy5.5-conjugated rituximab in mice bearing lymphoid tumor xenograft using time-domain near-infrared optical imaging,” Molecular Imaging, vol. 7, no. 6, pp. 272–282, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Olafsen and A. M. Wu, “Antibody vectors for imaging,” Seminars in Nuclear Medicine, vol. 40, no. 3, pp. 167–181, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Inagawa, T. Oohashi, K. Nishida et al., “Optical imaging of mouse articular cartilage using the glycosaminoglycans binding property of fluorescent-labeled octaarginine,” Osteoarthritis and Cartilage, vol. 17, no. 9, pp. 1209–1218, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Benincasa, C. Pelillo, S. Zorzet et al., “The proline-rich peptide Bac7(1–35) reduces mortality from Salmonella typhimurium in a mouse model of infection,” BMC Microbiology, vol. 10, article 178, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. E. R. Chemaly, R. Yoneyama, J. V. Frangioni, and R. J. Hajjar, “Tracking stem cells in the cardiovascular system,” Trends in Cardiovascular Medicine, vol. 15, no. 8, pp. 297–302, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. J. V. Frangioni, “New technologies for human cancer imaging,” Journal of Clinical Oncology, vol. 26, no. 24, pp. 4012–4021, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Kang, J. Lee, K. Kwon, and C. Choi, “Application of novel dynamic optical imaging for evaluation of peripheral tissue perfusion,” International Journal of Cardiology, vol. 145, no. 3, pp. e99–e101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. E. I. Altınoğlu and J. H. Adair, “Near infrared imaging with nanoparticles,” Wiley Interdisciplinary Reviews, vol. 2, no. 5, pp. 461–477, 2010. View at Google Scholar
  10. M. Votteler, P. J. Kluger, H. Walles, and K. Schenke-Layland, “Stem cell microenvironments—unveiling the secret of how stem cell fate is defined,” Macromolecular Bioscience, vol. 10, no. 11, pp. 1302–1315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. E. H. Emery, “The muscular dystrophies,” The Lancet, vol. 359, no. 9307, pp. 687–695, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. F. D. Price, K. Kuroda, and M. A. Rudnicki, “Stem cell based therapies to treat muscular dystrophy,” Biochimica et Biophysica Acta, vol. 1772, no. 2, pp. 272–283, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Fairclough, A. Bareja, and K. Davies, “Joan Mott prize lecture: progress in therapy for duchenne muscular dystrophy,” Experimental Physiology, vol. 96, no. 11, pp. 1101–1113, 2011. View at Google Scholar
  14. A. P. Beltrami, D. Cesselli, N. Bergamin et al., “Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow),” Blood, vol. 110, no. 9, pp. 3438–3446, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Cesselli, A. P. Beltrami, S. Rigo et al., “Multipotent progenitor cells are present in human peripheral blood,” Circulation Research, vol. 104, no. 10, pp. 1225–1234, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. K. Shalek, J. T. Robinson, E. S. Karp et al., “Intracellular delivery into immortalized and primary mammalian cells using surface-modified vertical silicon nanowires,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, pp. 1870–1875, 2010. View at Google Scholar
  17. S. Lam, F. Lesage, and X. Intes, “Time domain fluorescent diffuse optical tomography: analytical expressions,” Optics Express, vol. 13, no. 7, pp. 2263–2275, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Abulrob, E. Brunette, J. Slinn, E. Baumann, and D. Stanimirovic, “In vivo time domain optical imaging of renal ischemia-reperfusion injury: discrimination based on fluorescence lifetime,” Molecular Imaging, vol. 6, no. 5, pp. 304–314, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Jiang, B. N. Jahagirdar, R. L. Reinhardt et al., “Pluripotency of mesenchymal stem cells derived from adult marrow,” Nature, vol. 418, no. 6893, pp. 41–49, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. A. P. Beltrami, D. Cesselli, and C. A. Beltrami, “Pluripotency rush! Molecular cues for pluripotency, genetic reprogramming of adult stem cells, and widely multipotent adult cells,” Pharmacology and Therapeutics, vol. 124, no. 1, pp. 23–30, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. E. E. Dupont-Versteegden and R. J. McCarter, “Differential expression of muscular dystrophy in diaphragm versus hindlimb muscles of mdx mice,” Muscle and Nerve, vol. 15, no. 10, pp. 1105–1110, 1992. View at Google Scholar · View at Scopus
  22. F. Lassailly, E. Griessinger, and D. Bonnet, “‘Microenvironmental contaminations’ induced by fluorescent lipophilic dyes used for noninvasive in vitro and in vivo cell tracking,” Blood, vol. 115, no. 26, pp. 5347–5354, 2010. View at Publisher · View at Google Scholar · View at Scopus