Table of Contents
International Journal of Molecular Imaging
Volume 2013 (2013), Article ID 980769, 13 pages
http://dx.doi.org/10.1155/2013/980769
Clinical Study

Automatic Segmentation of Lung Carcinoma Using 3D Texture Features in 18-FDG PET/CT

1Medical Physics Unit, University of McGill, Montreal, QC, Canada H3A 0G4
2Department of Radiation Oncology, Odette Cancer Centre, the Sunnybrook Health Sciences Centre, Toronto, ON, Canada M4N 3M5
3Department of Radiation Oncology, Princess Margaret Hospital, Toronto, ON, Canada M5G 2M9

Received 11 September 2012; Revised 6 January 2013; Accepted 7 January 2013

Academic Editor: Hiroshi Watabe

Copyright © 2013 Daniel Markel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. J. A. Haasbeek, B. J. Slotman, and S. Senan, “Radiotherapy for lung cancer: clinical impact of recent technical advances,” Lung Cancer, vol. 64, no. 1, pp. 1–8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. X. A. Li, Adaptive Radiation Therapy, CRC Press, New York, NY, USA, 2011.
  3. E. Weiss and C. F. Hess, “The impact of gross tumor volume (GTV) and clinical target volume (CTV) definition on the total accuracy in radiotherapy: theoretical aspects and practical experiences,” Strahlentherapie und Onkologie, vol. 179, no. 1, pp. 21–30, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. J. van de Steene, N. Linthout, J. de Mey et al., “Definition of gross tumor volume in lung cancer: inter-observer variability,” Radiotherapy and Oncology, vol. 62, no. 1, pp. 37–39, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. C. B. Caldwell, K. Mah, Y. C. Ung et al., “Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion,” International Journal of Radiation Oncology Biology Physics, vol. 51, no. 4, pp. 923–931, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Hatt, F. Lamare, N. Boussion et al., “Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET,” Physics in Medicine and Biology, vol. 52, no. 12, pp. 3467–3491, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Mah, C. B. Caldwell, Y. C. Ung et al., “The impact of 18 FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study,” International Journal of Radiation Oncology Biology Physics, vol. 52, no. 2, pp. 339–350, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. E. Erdi, O. Mawlawi, S. M. Larson et al., “Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding,” Cancer, vol. 80, supplement 12, pp. 2505–2509, 1997. View at Google Scholar · View at Scopus
  9. A. C. Paulino, M. Koshy, R. Howell, D. Schuster, and L. W. Davis, “Comparison of CT- and FDG-PET-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer,” International Journal of Radiation Oncology Biology Physics, vol. 61, no. 5, pp. 1385–1392, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. Q. C. Black, I. S. Grills, L. L. Kestin et al., “Defining a radiotherapy target with positron emission tomography,” International Journal of Radiation Oncology Biology Physics, vol. 60, no. 4, pp. 1272–1282, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. J. F. Daisne, M. Sibomana, A. Bol, T. Doumont, M. Lonneux, and V. Grégoire, “Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms,” Radiotherapy and Oncology, vol. 69, no. 3, pp. 247–250, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. S. A. Nehmeh, H. El-Zeftawy, C. Greco et al., “An iterative technique to segment PET lesions using a Monte Carlo based mathematical model,” Medical Physics, vol. 36, no. 10, pp. 4803–4809, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. K. J. Biehl, F. M. Kong, F. Dehdashti et al., “18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate?” Journal of Nuclear Medicine, vol. 47, no. 11, pp. 1808–1812, 2006. View at Google Scholar · View at Scopus
  14. D. A. X. Schinagl, W. V. Vogel, A. L. Hoffmann, J. A. van Dalen, W. J. Oyen, and J. H. A. M. Kaanders, “Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volumedefinition in head and neck cancer,” International Journal of Radiation Oncology Biology Physics, vol. 69, no. 4, pp. 1282–1289, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Halt, C. C. L. Rest, A. Turzo, C. Roux, and D. Visvikis, “A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET,” IEEE Transactions on Medical Imaging, vol. 28, no. 6, pp. 881–893, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Hatt, C. C. L. Rest, P. Descourt et al., “Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications,” International Journal of Radiation Oncology Biology Physics, vol. 77, no. 1, pp. 301–308, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. J. C. Bezdek, L. O. Hall, M. C. Clark, D. B. Goldgof, and L. P. Clarke, “Medical image analysis with fuzzy models,” Statistical Methods in Medical Research, vol. 6, no. 3, pp. 191–214, 1997. View at Google Scholar · View at Scopus
  18. S. Belhassen and H. Zaidi, “A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET,” Medical Physics, vol. 37, no. 3, pp. 1309–1324, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. S. Mohamed, A. M. Youssef, E. F. E. Saadany, and M. M. A. Salama, “Artificial life feature selection techniques for prostrate cancer diagnosis using TRUS images,” Lecture Notes in Computer Science, vol. 3656, pp. 903–913, 2005. View at Google Scholar · View at Scopus
  20. B. J. Woods, B. D. Clymer, T. Kurc et al., “Malignant-lesion segmentation using 4D co-occurrence texture analysis applied to dynamic contrast-enhanced magnetic resonance breast image data,” Journal of Magnetic Resonance Imaging, vol. 25, no. 3, pp. 495–501, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. F. McNitt-Gray, E. M. Hart, N. Wyckoff, J. W. Sayre, J. G. Goldin, and D. R. Aberle, “A pattern classification approach to characterizing solitary pulmonary nodules imaged on high resolution CT: preliminary results,” Medical Physics, vol. 26, no. 6, pp. 880–888, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. A. C. Silva, A. C. Paiva, P. C. P. Carvalho, and M. Gattass, “Semivariogram and SGLDM methods comparison for the diagnosis of Solitary Lung Nodule,” in Proceedings of the 2nd Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA '05), vol. 3523 of Lecture Notes in Computer Science, pp. 479–486, June 2005. View at Scopus
  23. I. El Naqa, P. W. Grigsby, A. Apte et al., “Exploring feature-based approaches in PET images for predicting cancer treatment outcomes,” Pattern Recognition, vol. 42, no. 6, pp. 1162–1171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Uppaluri, E. A. Hoffman, M. Sonka, P. G. Hartley, G. W. Hunninghake, and G. McLennan, “Computer recognition of regional lung disease patterns,” American Journal of Respiratory and Critical Care Medicine, vol. 160, no. 2, pp. 648–654, 1999. View at Google Scholar · View at Scopus
  25. H. U. Kauczor, K. Heitmann, C. P. Heussel, D. Marwede, T. Uthmann, and M. Thelen, “Automatic detection and quantification of ground-glass opacities on high-resolution CT using multiple neural networks: comparison with a density mask,” American Journal of Roentgenology, vol. 175, no. 5, pp. 1329–1334, 2000. View at Google Scholar · View at Scopus
  26. F. Chabat, G. Z. Yang, and D. M. Hansell, “Obstructive lung diseases: texture classification for differentiation at CT,” Radiology, vol. 228, no. 3, pp. 871–877, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Ganeshan, S. Abaleke, R. C. D. Young, C. R. Chatwin, and K. A. Miles, “Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage,” Cancer Imaging, vol. 10, no. 1, pp. 137–143, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. G. V. Saradhi, G. Gopalakrishnan, A. S. Roy et al., “A framework for automated tumor detection in thoracic FDG PET images using texture-based features,” in Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI '09), pp. 97–100, July 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Zhou, S. Chang, D. N. Metaxas, B. Zhao, M. S. Ginsberg, and L. H. Schwartz, “An automatic method for ground glass opacity nodule detection and segmentation from CT studies,” in Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '06), pp. 3062–3065, September 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. I. El Naqa, D. Yang, A. Apte et al., “Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning,” Medical Physics, vol. 34, no. 12, pp. 4738–4749, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Wang, Y. Xia, J. Wang, and D. D. Feng, “Variational Bayes inference based segmentation of heterogeneous lymphoma volumes in dual-modality PET-CT images,” in Proceedings of the International Conference on Digital Image Computing: Techniques and Applications (DICTA '11), pp. 274–278, 2011.
  32. D. Han, J. Bayouth, Q. Song et al., “Globally optimal tumor segmentation in PET-CT images: a graph-based co-segmentation method,” Information Processing in Medical Imaging, vol. 22, pp. 245–256, 2011. View at Google Scholar
  33. H. Yu, C. B. Caldwell, K. Mah, and D. Mozeg, “Coregistered FDG PET/CT-based textural characterization of head and neck cancer for radiation treatment planning,” IEEE Transactions on Medical Imaging, vol. 28, no. 3, pp. 374–383, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Zhang, M. Brady, and S. Smith, “Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm,” IEEE Transactions on Medical Imaging, vol. 20, no. 1, pp. 45–57, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image classification,” IEEE Transactions on Systems, Man and Cybernetics, vol. 3, no. 6, pp. 610–621, 1973. View at Google Scholar · View at Scopus
  36. R. W. Conners, M. M. Trivedi, and C. A. Harlow, “Segmentation of a high-resolution urban scene using texture operators,” Computer Vision, Graphics, & Image Processing, vol. 25, no. 3, pp. 273–310, 1984. View at Google Scholar · View at Scopus
  37. B. Julesz, E. N. Gilbert, L. A. Shepp, and H. L. Frisch, “Inability of humans to discriminate between visual textures that agree in second order statistics: revisited,” Perception, vol. 2, no. 4, pp. 391–405, 1973. View at Google Scholar · View at Scopus
  38. M. Amadasun and R. King, “Textural features corresponding to textural properties,” IEEE Transactions on Systems, Man and Cybernetics, vol. 19, no. 5, pp. 1264–1273, 1989. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Tamura, S. Mori, and T. Yamawaki, “Textural features corresponding to visual perception,” IEEE Transactions on Systems, Man and Cybernetics, vol. 8, no. 6, pp. 460–473, 1978. View at Google Scholar · View at Scopus
  40. B. Zheng, A. Lu, L. A. Hardesty et al., “A method to improve visual similarity of breast masses for an interactive computer-aided diagnosis environment,” Medical Physics, vol. 33, no. 1, pp. 111–117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. C. I. Christodoulou, C. S. Pattichis, M. Pantziaris, and A. Nicolaides, “Texture-based classification of atherosclerotic carotid plaques,” IEEE Transactions on Medical Imaging, vol. 22, no. 7, pp. 902–912, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Yu, C. Caldwell, K. Mah et al., “Automated radiation targeting in head-and-neck cancer using region-based texture analysis of PET and CT images,” International Journal of Radiation Oncology Biology Physics, vol. 75, no. 2, pp. 618–625, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Struikmans, C. Wárlám-Rodenhuis, T. Stam et al., “Interobserver variability of clinical target volume delineation of glandular breast tissue and of boost volume in tangential breast irradiation,” Radiotherapy and Oncology, vol. 76, no. 3, pp. 293–299, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. D. J. Litman and R. J. Passonneau, “Combining multiple knowledge sources for discourse segmentation,” in Proceedings of the 33rd annual meeting on Association for Computational Linguistics, pp. 108–115, 1995.
  45. M. Dahele, D. Hwang, C. Peressotti et al., “Developing a methodology for three-dimensional correlation of PETCT images and whole-mount histopathology in non-small-cell lung cancer,” Current Oncology, vol. 15, no. 5, pp. 62–69, 2008. View at Google Scholar
  46. C. Orczyk, A. Mikheev, A. Rosenkrantz, J. Melamed, S. S. Taneja, and H. Rusinek, “Imaging of prostate cancer: a platform for 3D co-registration of in-vivo MRI ex-vivo MRI and pathology,” in Medical Imaging: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 8316 of Proceedings of SPIE, 2012, http://spiedigitallibrary.org/.
  47. R. Allozi, X. A. Li, J. White et al., “Tools for consensus analysis of experts' contours for radiotherapy structure definitions,” Radiotherapy and Oncology, vol. 97, no. 3, pp. 572–578, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Suinesiaputra, B. R. Cowan, J. P. Finn et al., “Left ventricular segmentation challenge from cardiac MRI: a collation study,” Lecture Notes in Computer Science, vol. 7085, pp. 88–97, 2012. View at Publisher · View at Google Scholar