Table of Contents
International Journal of Molecular Imaging
Volume 2014, Article ID 695391, 8 pages
http://dx.doi.org/10.1155/2014/695391
Research Article

Beneficial Effect of Glucose Control on Atherosclerosis Progression in Diabetic ApoE−/− Mice: Shown by Rage Directed Imaging

1Department of Medicine, Columbia University Medical Center, 650 West 168 Street, New York, NY 10032, USA
2Department of Medicine, New York University Medical Center, New York, NY 10016, USA

Received 17 January 2014; Accepted 14 March 2014; Published 14 April 2014

Academic Editor: Hideo Saji

Copyright © 2014 Yared Tekabe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. The Diabetes Control and Complications Trial Research Group, “The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus,” The New England Journal of Medicine, vol. 329, pp. 977–986, 1993. View at Google Scholar
  2. Z. Milicevic, I. Raz, B. N. Campaigne et al., “Natural history of cardiovascular disease in patients with diabetes,” Diabetes Care, vol. 2, pp. 5155–5160, 2008. View at Google Scholar
  3. I. M. Stratton, A. I. Adler, H. A. W. Neil et al., “Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study,” British Medical Journal, vol. 321, no. 7258, pp. 405–412, 2000. View at Google Scholar · View at Scopus
  4. E. Selvin, S. Marinopoulos, G. Berkenblit et al., “Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus,” Annals of Internal Medicine, vol. 141, no. 6, pp. 421–431, 2004. View at Google Scholar · View at Scopus
  5. A. M. Schmidt, S. D. Yan, J.-L. Wautier, and D. Stern, “Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis,” Circulation Research, vol. 84, no. 5, pp. 489–497, 1999. View at Google Scholar · View at Scopus
  6. E. Harja, D.-X. Bu, B. I. Hudson et al., “Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE−/− mice,” Journal of Clinical Investigation, vol. 118, no. 1, pp. 183–194, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Basta, A. M. Schmidt, and R. de Caterina, “Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes,” Cardiovascular Research, vol. 63, no. 4, pp. 582–592, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. A. P. Burke, F. D. Kolodgie, A. Zieske et al., “Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 7, pp. 1266–1271, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Cipollone, A. Iezzi, M. Fazia et al., “The receptor RAGE as a progression factor amplifying arachidonate-dependent inflammatory and proteolytic response in human atherosclerotic plaques: role of glycemic control,” Circulation, vol. 108, no. 9, pp. 1070–1077, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. DCCT/EDIC Study Research Group, “Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. Results of the DCCT/EDIC study,” The New England Journal of Medicine, vol. 353, no. 2643, p. 2653, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Terry, K. Raravikar, N. Chokrungvaranon, and P. D. Reaven, “Does aggressive glycemic control benefit macrovascular and microvascular disease in type 2 diabetes? insights from ACCORD, ADVANCE, and VADT,” Current Cardiology Reports, vol. 14, no. 1, pp. 79–88, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Kislinger, N. Tanji, T. Wendt et al., “Receptor for advanced glycation end products mediates inflammation and enhanced expression of tissue factor in vasculature of diabetic apolipoprotein E-null mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 6, pp. 905–910, 2001. View at Google Scholar · View at Scopus
  13. D. Yao and M. Brownlee, “Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands,” Diabetes, vol. 59, no. 1, pp. 249–255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Wendt, E. Harja, L. Bucciarelli et al., “RAGE modulates vascular inflammation and atherosclerosis in a murine model of type 2 diabetes,” Atherosclerosis, vol. 185, no. 1, pp. 70–77, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. L. G. Bucciarelli, T. Wendt, W. Qu et al., “RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E-null mice,” Circulation, vol. 106, no. 22, pp. 2827–2835, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Park, K. G. Raman, K. J. Lee et al., “Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts,” Nature Medicine, vol. 4, no. 9, pp. 1025–1031, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Tekabe, J. Luma, A. J. Einstein et al., “A novel monoclonal antibody for RAGE-directed imaging identifies accelerated atherosclerosis in diabetes,” Journal of Nuclear Medicine, vol. 51, no. 1, pp. 92–97, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Tekabe, Q. Li, R. Rosario et al., “Development of receptor for advanced glycation end products-directed imaging of atherosclerotic plaque in a murine model of spontaneous atherosclerosis,” Circulation. Cardiovascular Imaging, vol. 1, no. 3, pp. 212–219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. D. J. Hnatowich, W. W. Layne, and R. L. Childs, “Radioactive labeling of antibody: a simple and efficient method,” Science, vol. 220, no. 4597, pp. 613–615, 1983. View at Google Scholar · View at Scopus