Table of Contents
Indian Journal of Materials Science
Volume 2013, Article ID 206239, 7 pages
http://dx.doi.org/10.1155/2013/206239
Research Article

Stress and Strain Analysis of Functionally Graded Rectangular Plate with Exponentially Varying Properties

1Mechanical Engineering Department, University of Tehran, Tehran, Iran
2Department of Mechanical Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran

Received 26 June 2013; Accepted 16 July 2013

Academic Editors: S. Banerjee and D. L. Sales

Copyright © 2013 Amin Hadi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. R. Daneshmehr, A. Hadi, and S. M. N. Mehrian, “Investigation of elastoplastic functionally graded Euler-Bernoulli beam subjected to distribute transverse loading,” Journal of Basic and Applied Scientific Research, vol. 2, no. 10, pp. 10628–10634, 2012. View at Google Scholar
  2. A. Hadi, A. R. Daneshmehr, S. M. N. Mehrian, M. Hosseini, and F. Ehsani, “Elastic analysis of functionally graded timoshenko beam subjected to transverse loading,” Technical Journal of Engineering and Applied Sciences, vol. 3, no. 13, pp. 1246–1254, 2013. View at Google Scholar
  3. J. N. Reddy, “Analysis of functionally graded plates,” International Journal for Numerical Methods in Engineering, vol. 47, no. 1–3, pp. 663–684, 2000. View at Google Scholar · View at Scopus
  4. Z.-Q. Cheng and R. C. Batra, “Deflection relationships between the homogeneous Kirchhoff plate theory and different functionally graded plate theories,” Archives of Mechanics, vol. 52, no. 1, pp. 143–158, 2000. View at Google Scholar · View at Scopus
  5. Z.-Q. Cheng and R. C. Batra, “Exact correspondence between eigenvalues of membranes and functionally graded simply supported polygonal plates,” Journal of Sound and Vibration, vol. 229, no. 4, pp. 879–895, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. C. T. Loy, K. Y. Lam, and J. N. Reddy, “Vibration of functionally graded cylindrical shells,” International Journal of Mechanical Sciences, vol. 41, no. 3, pp. 309–324, 1999. View at Google Scholar · View at Scopus
  7. Z.-Q. Cheng and R. C. Batra, “Three-dimensional thermoelastic deformations of a functionally graded elliptic plate,” Composites Part B: Engineering, vol. 31, no. 2, pp. 97–106, 2000. View at Google Scholar · View at Scopus
  8. S. S. Vel and R. C. Batra, “Exact solution for thermoelastic deformations of functionally graded thick rectangular plates,” AIAA Journal, vol. 40, no. 7, pp. 1421–1433, 2002. View at Google Scholar · View at Scopus
  9. T. Reiter, G. J. Dvorak, and V. Tvergaard, “Micromechanical models for graded composite materials,” Journal of the Mechanics and Physics of Solids, vol. 45, no. 8, pp. 1281–1302, 1997. View at Google Scholar · View at Scopus
  10. Y. Tanigawa, “Theoretical approach of optimum design for a plate of functionally gradient materials under thermal loading,” in Thermal Shock and Thermal Fatigue Behavior of Advanced Ceramics, vol. 241 of Nato Science Series E, pp. 171–180, 1992. View at Google Scholar
  11. K. Tanaka, Y. Tanaka, K. Enomoto, V. F. Poterasu, and Y. Sugano, “Design of thermoelastic materials using direct sensitivity and optimization methods. Reduction of thermal stresses in functionally gradient materials,” Computer Methods in Applied Mechanics and Engineering, vol. 106, no. 1-2, pp. 271–284, 1993. View at Google Scholar · View at Scopus
  12. K. Tanaka, Y. Tanaka, H. Watanabe, V. F. Poterasu, and Y. Sugano, “An improved solution to thermoelastic material design in functionally gradient materials: Scheme to reduce thermal stresses,” Computer Methods in Applied Mechanics and Engineering, vol. 109, no. 3-4, pp. 377–389, 1993. View at Google Scholar · View at Scopus
  13. Z. H. Jin and N. Noda, “Minimization of thermal stress intensity factor for a crack in a metal ceramic mixture, Ceramic Trans,” Functionally Graded Material, vol. 34, pp. 47–54, 1993. View at Google Scholar
  14. N. Noda and Z. H. Jin, “Thermal stress intensity factors for a crack in a strip of a functionally gradient material,” International Journal of Solids and Structures, vol. 30, no. 8, pp. 1039–1056, 1993. View at Google Scholar · View at Scopus
  15. Z. H. Jin and N. Noda, “Transient thermal stress intensity factors for a crack in a semi-infinite plate of a functionally gradient material,” International Journal of Solids and Structures, vol. 31, no. 2, pp. 203–218, 1994. View at Google Scholar · View at Scopus
  16. Y. Obata and N. Noda, “Steady thermal stresses in a hollow circular cylinder and a hollow sphere of a functionally gradient material,” Journal of Thermal Stresses, vol. 17, no. 3, pp. 471–487, 1994. View at Google Scholar · View at Scopus
  17. Y. Obata, N. Noda, and T. Tsuji, “Steady thermal stresses in a functionally gradient material plate,” Transactions of the JSME, vol. 58, pp. 1689–1695, 1992. View at Google Scholar
  18. G. N. Praveen and J. N. Reddy, “Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates,” International Journal of Solids and Structures, vol. 35, no. 33, pp. 4457–4476, 1998. View at Google Scholar · View at Scopus
  19. J. N. Reddy and C. D. Chin, “Thermomechanical analysis of functionally graded cylinders and plates,” Journal of Thermal Stresses, vol. 21, no. 6, pp. 593–626, 1998. View at Google Scholar · View at Scopus
  20. M. M. Najafizadeh and M. R. Eslami, “Buckling analysis of circular plates of functionally graded materials under uniform radial compression,” International Journal of Mechanical Sciences, vol. 44, no. 12, pp. 2479–2493, 2002. View at Publisher · View at Google Scholar · View at Scopus