Table of Contents
Indian Journal of Materials Science
Volume 2013 (2013), Article ID 251495, 7 pages
http://dx.doi.org/10.1155/2013/251495
Research Article

Growth of Hierarchically Structured High-Surface Area Alumina on FeCrAl Alloy Wires

1The University of Manchester, SCEAS, Manchester M13 9PL, UK
2Saudi Aramco, Research and Development Centre, Dhahran, Saudi Arabia

Received 20 August 2013; Accepted 28 October 2013

Academic Editors: A. Bhattacharyya and A. Facchetti

Copyright © 2013 Chandni Rallan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Avila, M. Montes, and E. E. Miró, “Monolithic reactors for environmental applications: a review on preparation technologies,” Chemical Engineering Journal, vol. 109, no. 1–3, pp. 11–36, 2005. View at Publisher · View at Google Scholar
  2. V. Meille, S. Pallier, G. V. S. C. Bustamante, M. Roumanie, and J. P. Reymon, “Deposition of γ-Al2O3 layers on structured supports for the design of new catalytic reactors,” Applied Catalysis A, vol. 286, no. 2, pp. 232–238, 2005. View at Publisher · View at Google Scholar
  3. J. L. Williams, “Monolith structures, materials, properties and uses,” Catalysis Today, vol. 69, no. 1–4, pp. 3–9, 2001. View at Google Scholar · View at Scopus
  4. R. M. Heck, S. Gulati, and R. J. Farrauto, “The application of monoliths for gas phase catalytic reactions,” Chemical Engineering Journal, vol. 82, no. 1–3, pp. 149–156, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Białas, W. Osuch, W. Łasocha, and M. Najbar, “The influence of the Cr–Al foil texture on morphology of adhesive Al2O3 layers in monolithic environmental catalysts,” Catalysis Today, vol. 137, no. 2–4, pp. 489–492, 2008. View at Publisher · View at Google Scholar
  6. F. Liu, H. Götlind, J. E. Svensson, L. G. Johansson, and M. Halvarsson, “Early stages of the oxidation of a FeCrAlRE alloy (Kanthal AF) at 900°C: a detailed microstructural investigation,” Corrosion Science, vol. 50, no. 8, pp. 2272–2281, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. H. El Kadiri, R. Molins, Y. Bienvenu, and M. F. Horstemeyer, “Abnormal high growth rates of metastable aluminas on FeCrAl alloys,” Oxidation of Metals, vol. 64, no. 1-2, pp. 63–97, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Jedlinski, “The oxidation behaviour of FeCrAl “alumina forming” alloys at high temperatures,” Solid State Ionics, vol. 101–103, part 2, pp. 1033–1040, 1997. View at Google Scholar · View at Scopus
  9. V. Meille, “Review on methods to deposit catalysts on structured surfaces,” Applied Catalysis A, vol. 315, pp. 1–17, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Zhang, L. Zhang, B. Liang, and Y. Li, “Effect of acid treatment on the high-temperature surface oxidation behavior of FeCrAlloy foil used for methane combustion catalyst support,” Industrial and Engineering Chemistry Research, vol. 48, no. 10, pp. 5117–5122, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. X. Wu, D. Weng, L. Xu, and H. Li, “Structure and performance of γ-alumina washcoat deposited by plasma spraying,” Surface and Coatings Technology, vol. 145, no. 1–3, pp. 226–232, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Airiskallio, E. Nurmi, M. H. Heinonen et al., “Third element effect in the surface zone of Fe-Cr-Al alloys,” Physical Review B, vol. 81, no. 3, Article ID 033105, 4 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Asteman and M. Spiegel, “A comparison of the oxidation behaviours of Al2O3 formers and Cr2O3 formers at 700°C—oxide solid solutions acting as a template for nucleation,” Corrosion Science, vol. 50, no. 6, pp. 1734–1743, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Berthomé, E. N'Dah, Y. Wouters, and A. Galerie, “Temperature dependence of metastable alumina formation during thermal oxidation of FeCrAl foils,” Materials and Corrosion, vol. 56, no. 6, pp. 389–392, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. L. R. Chapman, C. W. Vigor, and J. F. Watton, “Enhanced oxide whisker growth on peeled Al-containing stainless steel foil,” US Patent 4331631, 1982.
  16. G. L. Vaneman and D. R. Sigler, “Accelerated whisker growth on iron-chromium-aluminum alloy foil,” US Patent 4915751, 1990.
  17. C. Mennicke, D. R. Clarke, and M. Rühle, “Stress relaxation in thermally grown alumina scales on heating and cooling FeCrAl and FeCrAlY alloys,” Oxidation of Metals, vol. 55, no. 5-6, pp. 551–569, 2001. View at Publisher · View at Google Scholar