Table of Contents
Indian Journal of Materials Science
Volume 2013, Article ID 307514, 7 pages
http://dx.doi.org/10.1155/2013/307514
Research Article

Preparation and Characterization of HPMC/PVP Blend Films Plasticized with Sorbitol

1Department of Physics, Yuvaraja’s College, Mysore 570 005, India
2Department of Polymer Science, Sir M.V.P.G. Centre, Mandya 571 402, India
3Department of Studies in Physics, Manasagangotri, Mysore 570 006, India

Received 18 August 2013; Accepted 24 September 2013

Academic Editors: A. K. Bajpai and U. De

Copyright © 2013 H. Somashekarappa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. G. Cascone, “Dynamic-mechanical properties of bioartificial polymeric materials,” Polymer International, vol. 43, no. 1, pp. 55–69, 1997. View at Google Scholar · View at Scopus
  2. R. Fukae, T. Yamamoto, O. Sangen, T. Saso, T. Kako, and M. Kamachi, “Dynamic mechanical behaviors of poly(vinyl alcohol) film with high syndiotacticity,” Polymer Journal, vol. 22, no. 7, pp. 636–637, 1990. View at Google Scholar · View at Scopus
  3. J. A. Ratto, C. C. Chen, and R. B. Blumstein, “Phase behavior study of chitosan/polyamide blends,” Journal of Applied Polymer Science, vol. 59, no. 9, pp. 1451–1461, 1996. View at Google Scholar · View at Scopus
  4. M. Mucha, J. Piekielna, and A. Wieczorek, “Characterization and morphology of biodegradable chitosan/synthetic polymer blends,” Macromolecular Symposia, vol. 144, pp. 391–412, 1999. View at Google Scholar
  5. P. K. Dutta, S. Tripathi, G. K. Mehrotra, and J. Dutta, “Perspectives for chitosan based antimicrobial films in food applications,” Food Chemistry, vol. 114, no. 4, pp. 1173–1182, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Pereda, A. G. Ponce, N. E. Marcovich, R. A. Ruseckaite, and J. F. Martucci, “Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity,” Food Hydrocolloids, vol. 25, no. 5, pp. 1372–1381, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Jonjankiat, T. Wittaya, and W. Sridach, “Improvement of poly(vinyl alcohol) adhesives with cellulose microfibre from sugarcane bagasse,” Iranian Polymer Journal, vol. 20, no. 4, pp. 305–317, 2011. View at Google Scholar · View at Scopus
  8. S. B. Bahrami, S. S. Kordestani, H. Mirzadeh, and P. Mansoori, “Poly (vinyl alcohol)-chitosan blends: preparation, mechanical and physical properties,” Iranian Polymer Journal, vol. 12, no. 2, pp. 139–146, 2003. View at Google Scholar · View at Scopus
  9. L. Avérous, C. Fringant, and L. Moro, “Plasticized starch-cellulose interactions in polysaccharide composites,” Polymer, vol. 42, no. 15, pp. 6565–6572, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Cerruti, G. Santagata, G. Gomez d'Ayala et al., “Effect of a natural polyphenolic extract on the properties of a biodegradable starch-based polymer,” Polymer Degradation and Stability, vol. 96, no. 5, pp. 839–846, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Tanabe, N. Okitsu, A. Tachibana, and K. Yamauchi, “Preparation and characterization of keratin-chitosan composite film,” Biomaterials, vol. 23, no. 3, pp. 817–825, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Guo, P. F. Fox, A. Flynn, and K. S. Mohammad, “Heat-induced changes in sodium caseinate,” Journal of Dairy Research, vol. 56, pp. 503–512, 1989. View at Google Scholar
  13. H. Konno, T. Handa, D. E. Alonzo, and L. S. Taylor, “Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 70, no. 2, pp. 493–499, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Nyamweya and S. W. Hoag, “Assessment of polymer-polymer interactions in blends of HPMC and film forming polymers by modulated temperature differential scanning calorimetry,” Pharmaceutical Research, vol. 17, no. 5, pp. 625–631, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Divakara, S. Madhu, and R. Somashekar, “Stacking faults and microstructural parameters in non-mulberry silk fibres,” Pramana, vol. 73, no. 5, pp. 927–938, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. N. Cassu and M. I. Felisberti, “Poly(vinyl alcohol) and poly(vinyl pyrrolidone) blends: miscibility, microheterogeneity and free volume change,” Polymer, vol. 38, no. 15, pp. 3907–3911, 1997. View at Google Scholar · View at Scopus
  17. I. H. Hall and R. Somashekar, “Determination of crystal size and disorder from the X-ray diffraction photograph of polymer fibres. 2. Modelling intensity profiles,” Journal of Applied Crystallography, vol. 24, no. 6, pp. 1051–1059, 1991. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Somashekar, I. H. Hall, and P. D. Carr, “The determination of crystallize and disorder from X-ray diffraction photographs of polymer fibres, 1. The accuracy of determination of Fourier coefficients of intensity of a reflection,” Journal of Applied Crystallography, vol. 22, p. 363, 1989. View at Google Scholar
  19. S. Divakara, G. N. Siddaraju, and R. Somashekar, “Comparative study of natural and man-made polymers using whole powder pattern fitting technique,” Fibers and Polymers, vol. 11, no. 6, pp. 861–868, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Sangappa, S. S. Mahesh, R. Somashekar, and G. Subramanya, “Analysis of diffraction line profile from silk fibers using various distribution functions,” Journal of Polymer Research, vol. 12, no. 6, pp. 465–472, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. J.-L. Audic and B. Chaufer, “Influence of plasticizers and crosslinking on the properties of biodegradable films made from sodium caseinate,” European Polymer Journal, vol. 41, no. 8, pp. 1934–1942, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. V. C.-H. Wan, M. S. Kim, and S.-Y. Lee, “Water vapor permeability and mechanical properties of soy protein isolate edible films composed of different plasticizer combinations,” Journal of Food Science, vol. 70, no. 6, pp. E387–E391, 2005. View at Google Scholar · View at Scopus
  23. D. C. W. Siew, C. Heilmann, A. J. Easteal, and R. P. Cooney, “Solution and film properties of sodium caseinate/glycerol and sodium caseinate/polyethylene glycol edible coating systems,” Journal of Agricultural and Food Chemistry, vol. 47, no. 8, pp. 3432–3440, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Arvanitoyannis, E. Psomiadou, and A. Nakayama, “Edible films made from sodium caseinate, starches, sugars or glycerol—part 1,” Carbohydrate Polymers, vol. 31, no. 4, pp. 179–192, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Psomiadou, I. Arvanitoyannis, and N. Yamamoto, “Edible films made from natural resources; microcrystalline cellulose (MCC), methylcellulose (MC) and corn starch and polyols—part 2,” Carbohydrate Polymers, vol. 31, no. 4, pp. 193–204, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. M. J. Fabra, P. Talens, and A. Chiralt, “Tensile properties and water vapor permeability of sodium caseinate films containing oleic acid-beeswax mixtures,” Journal of Food Engineering, vol. 85, no. 3, pp. 393–400, 2008. View at Publisher · View at Google Scholar · View at Scopus