Table of Contents
Indian Journal of Materials Science
Volume 2013 (2013), Article ID 357563, 8 pages
http://dx.doi.org/10.1155/2013/357563
Research Article

Effect of Steel Fibres and Low Calcium Fly Ash on Mechanical and Elastic Properties of Geopolymer Concrete Composites

Department of Civil Engineering, SRES’s College of Engineering, Kopargaon, Maharashtra 423601, India

Received 17 August 2013; Accepted 7 November 2013

Academic Editors: D. Gomez-Garcia, F. M. Morales, A. Simar, and S. Thomas

Copyright © 2013 Atteshamuddin S. Sayyad and Subhash V. Patankar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Effect of steel fibres and low calcium fly ash on mechanical and elastic properties of geopolymer concrete composites (GPCC) has been presented. The study analyses the impact of steel fibres and low calcium fly ash on the compressive, flexural, split-tensile, and bond strengths of hardened GPCC. Geopolymer concrete mixes were prepared using low calcium fly ash and activated by alkaline solutions (NaOH and Na2SiO3) with solution to fly ash ratio of 0.35. Crimped steel fibres having aspect ratio of 50 with volume fraction of 0.0% to 0.5% at an interval of 0.1% by mass of normal geopolymer concrete are used. The entire tests were carried out according to test procedures given by the Indian standards wherever applicable. The inclusion of steel fibre showed the excellent improvement in the mechanical properties of fly ash based geopolymer concrete. Elastic properties of geopolymer concrete composites are also determined by various methods available in the literature and compared with each other.