Table of Contents
Indian Journal of Materials Science
Volume 2013 (2013), Article ID 357563, 8 pages
http://dx.doi.org/10.1155/2013/357563
Research Article

Effect of Steel Fibres and Low Calcium Fly Ash on Mechanical and Elastic Properties of Geopolymer Concrete Composites

Department of Civil Engineering, SRES’s College of Engineering, Kopargaon, Maharashtra 423601, India

Received 17 August 2013; Accepted 7 November 2013

Academic Editors: D. Gomez-Garcia, F. M. Morales, A. Simar, and S. Thomas

Copyright © 2013 Atteshamuddin S. Sayyad and Subhash V. Patankar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. C. Halpin and S. W. Tsai, “Effects of environmental factors on composite materials,” Tech. Rep. AFML-TR, 1969. View at Google Scholar
  2. J. Davidovits, “Geopolymers—inorganic polymeric new materials,” Journal of Thermal Analysis, vol. 37, no. 8, pp. 1633–1656, 1991. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Davidovits, “Geopolymers: man-made geosynthesis and the resulting development of very early high strength cement,” Journal of Material Education, vol. 16, no. 2, pp. 91–139, 1994. View at Google Scholar
  4. D. Hardjito, S. E. Wallah, D. M. J. Sumajouw, and B. V. Rangan, “On the development of fly ash-based geopolymer concrete,” ACI Materials Journal, vol. 101, no. 6, pp. 467–472, 2004. View at Google Scholar · View at Scopus
  5. P. Chindaprasirt, T. Chareerat, and V. Sirivivatnanon, “Workability and strength of coarse high calcium fly ash geopolymer,” Cement and Concrete Composites, vol. 29, no. 3, pp. 224–229, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. B. V. Rangan, “Mix design and production of flyash based geopolymer concrete,” Indian Concrete Journal, vol. 82, no. 5, pp. 7–15, 2008. View at Google Scholar · View at Scopus
  7. R. Anuradha, V. Sreevidya, R. Venkatasubramani, and B. V. Rangan, “Modified guidelines for geopolymer concrete mix design using Indian standards,” Asian Journal of Civil Engineering, vol. 8, pp. 353–369, 2012. View at Google Scholar
  8. S. V. Patankar, S. S. Jamkar, and Y. M. Ghugal, “Effect of sodium hydroxide an flow and strength of fly ash based geopolymer mortar,” Journal of Structural Engineering, vol. 39, no. 1, pp. 7–12, 2012. View at Google Scholar
  9. J. G. S. Van Jaarsveld, J. S. J. Van Deventer, and L. Lorenzen, “The potential use of geopolymeric materials to immobilise toxic metals—part I: theory and applications,” Minerals Engineering, vol. 10, no. 7, pp. 659–669, 1997. View at Google Scholar · View at Scopus
  10. K. A. Anuar, A. R. M. Ridzuanand, and S. Ismail, “Strength characteristic of gpc containing recycled concrete aggregate,” International Journal of Civil and Environmental Engineering, vol. 11, no. 1, pp. 81–85, 2011. View at Google Scholar
  11. S. Alonso and A. Palomo, “Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio,” Materials Letters, vol. 47, no. 1-2, pp. 55–62, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. D. M. J. Sumajouw, D. Hardjito, S. E. Wallah, and B. V. Rangan, “Fly ash-based geopolymer concrete: study of slender reinforced columns,” Journal of Materials Science, vol. 42, no. 9, pp. 3124–3130, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Bakharev, “Resistance of geopolymer materials to acid attack,” Cement and Concrete Research, vol. 35, no. 4, pp. 658–670, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Pernica, P. N. B. Reis, J. A. M. Ferreira, and P. Louda, “Effect of test conditions on the bending strength of a geopolymer- reinforced composite,” Journal of Materials Science, vol. 45, no. 3, pp. 744–749, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Vijai, R. Kumutha, and B. G. Vishnuram, “Properties of glass fibre reinforced geopolymer concrete composite,” Asian Journal of Civil Engineering, vol. 13, no. 4, pp. 511–520, 2012. View at Google Scholar
  16. K. Vijai, R. Kumutha, and B. G. Vishnuram, “Effect of inclusion of steel fibres on the properties of geopolymer concrete composites,” Asian Journal of Civil Engineering, vol. 13, no. 3, pp. 377–385, 2012. View at Google Scholar
  17. K. Vijai, R. Kumutha, and B. G. Vishnuram, “Experimental investigations on mechanical properties of geopolymer concrete composites,” Asian Journal of Civil Engineering, vol. 13, no. 1, pp. 89–96, 2012. View at Google Scholar · View at Scopus
  18. V. Sathish Kumar, B. S. Thomas, and A. Chtistopher, “An environmental study on the properties of glass fibre reinforced geopolymer concrete,” International Journal of Engineering Research and Applications, vol. 2, no. 6, pp. 722–726, 2012. View at Google Scholar
  19. A. Bhowmick and S. Ghosh, “Effect of synthesizing parameters on workability and compressive strength of fly ash based geopolymer mortar,” International Journal of Civil and Structural Engineering, vol. 3, no. 2, pp. 168–177, 2012. View at Google Scholar
  20. Y. M. Ghugal and S. A. Bhalchandra, “Performance of fibre reinforced high strength silica fume concrete,” Civil Engineering and Construction Review, vol. 22, pp. 32–44, 2009. View at Google Scholar
  21. IS 2770, Methods of Testing Bond Strength in Reinforced Concrete- Part I, Bureau of Indian Standards, New Delhi, India, 1997.
  22. IS 456, Code of Practice for Plain and Reinforced Concrete, Bureau of Indian Standards, New Delhi, India, 2000.
  23. D. J. Hannant, Fibre Cements and Fibre Concretes, John Wiley and Sons, New York, NY, USA, 1978.
  24. K. H. Tan, P. Paramasivam, and K. C. Tan, “Instantaneous and long-term deflections of steel fiber reinforced concrete beams,” ACI Structural Journal, vol. 91, no. 4, pp. 384–393, 1994. View at Google Scholar · View at Scopus
  25. M. Kakizaki, M. Harada, T. Soshiroda, S. Kubota, T. Ikeda, and Y. Kasai, “Strength and elastic modulus of recycled agreegate concrete,” in Proceedings of the 2nd International RILEM Synposium on Reuse of Demolition Waste, vol. 2, pp. 565–574, 1988.
  26. Y. M. Ghugal, “Effects of steel fibres on various strengths of concrete,” Indian Concrete Journal, vol. 4, no. 3, pp. 23–29, 2003. View at Google Scholar