Table of Contents
International Journal of Microwave Science and Technology
Volume 2010 (2010), Article ID 535307, 9 pages
http://dx.doi.org/10.1155/2010/535307
Research Article

Design and Comparison of 24 GHz Patch Antennas on Glass Substrates for Compact Wireless Sensor Nodes

1Berlin Institute of Technology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
2Fraunhofer Institute for Reliability and Microintegration (IZM), Gustav-Meyer-Allee 25, 13355 Berlin, Germany

Received 9 September 2010; Revised 24 November 2010; Accepted 9 December 2010

Academic Editor: Chien-Jen Wang

Copyright © 2010 Florian Ohnimus et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Niedermayer, S. Guttowski, R. Thomasius, D. Polityko, K. Schrank, and H. Reichl, “Miniaturization platform for wireless sensor nodes based on 3D-packaging technologies,” in Proceedings of the 5th International Conference on Information Processing in Sensor Networks (IPSN '06), pp. 391–398, April 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Ebelt, H. Millner, and M. Vossiek, “Wireless network-to-network localization for measuring the spatial position and orientation of vehicles,” in Proceedings of the IEEE International Conference on Wireless Information Technology and Systems (ICWITS '10), Honolulu, Hawaii, USA, August 2010. View at Publisher · View at Google Scholar
  3. F. Ohnimus, A. Podlasly, J. Bauer et al., “Electrical design and characterization of elevated antennas at PCB-level,” in Proceedings of the 59th Electronic Components and Technology Conference (ECTC '09), pp. 1618–1623, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. P. R. Grajek, B. Schoenlinner, and G. M. Rebeiz, “A 24-GHz high-gain Yagi-Uda antenna array,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 5, pp. 1257–1261, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Seki, N. Honma, K. Nishikawa, and K. Tsunekawa, “A 60-GHz multilayer parasitic microstrip array antenna on LTCC substrate for system-on-package,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 5, pp. 339–341, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Reichl and M. J. Wolf, “System integration technologies for ultra small systems,” in Proceedings of the 11th IEEE International Symposium and Exhibition on Advanced Packaging Materials Processes, Properties and Interfaces, p. 11, Atlanta, Ga, USA, 2006. View at Scopus
  7. P. K. Talukder, M. Neuner, C. Meliani, F. J. Schmückle, and W. Heinrich, “A 24 GHz active antenna in flip-chip technology with integrated frontend,” in Proceedings of the IEEE MTT-S International Microwave Symposium Digest, pp. 1776–1779, June 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. M. Hella, S. Devarajan, J. Q. Lu, K. Rose, and R. J. Gutmann, “Die-on-wafer and wafer-level 3D integration for millimeter-wave smart antenna transceivers,” in Proceedings of the IEEE Annual Conference on Wireless and Microwave Technology (WAMICON '05), pp. 125–128, April 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Carrillo-Ramirez and R. W. Jackson, “A highly integrated millimeter-wave active antenna array using BCB and silicon substrate,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 6, pp. 1648–1653, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. J. G. Yook and L. P. B. Katehi, “Micromachined microstrip patch antenna with controlled mutual coupling and surface waves,” IEEE Transactions on Antennas and Propagation, vol. 49, no. 9, pp. 1282–1289, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. P. M. Mendes, S. Sinaga, A. Polyakov, M. Bartek, J. N. Burghartz, and J. H. Correia, “Wafer-level integration of on-chip antennas and RF passives using high-resistivity polysilicon substrate technology,” in Proceedings of the 54th Electronic Components and Technology Conference, pp. 1879–1884, June 2004. View at Scopus
  12. A. Latif, A. Oulad-Said, and A. A. Ouahman, “Passage from an inset-fed rectangular patch antenna to an end-fed and probe-fed rectangular patch antenna, modelling and analyses,” in Proceedings of the IEEE International Conference on Industrial Technology (ICIT '04), pp. 932–937, December 2004. View at Scopus
  13. B. M. Alarjani and J. S. Dahele, “Feed reactance of rectangular microstrip patch antenna with probe feed,” Electronics Letters, vol. 36, no. 5, pp. 388–390, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Murakami, S. Sekine, and H. Shoki, “Analysis of cross-slot-coupled circular microstrip antenna,” Electronics Letters, vol. 38, no. 25, pp. 1619–1621, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Ai-Jibouri, T. Viasits, E. Korolkiewicz, S. Scott, and A. Sambell, “Transmission-line modelling of the cross-aperture-coupled circular polarised microstrip antenna,” IEE Proceedings: Microwaves, Antennas and Propagation, vol. 147, no. 2, pp. 82–86, 2000. View at Publisher · View at Google Scholar
  16. W. Yi, W. Lei, and S. Yunqing, “Design of L-circularly polarized microstrip antenna array at Ka band,” in Proceedings of the International Conference Microwave and Millimeter Wave Technology (ICMMT '10), Chengdu, China, May 2010.
  17. W. S. T. Rowe and R. B. Waterhouse, “Investigation of proximity coupled patch antennas suitable for MMIC integration,” in Proceedings of the International Symposium on Antennas and Propagation, pp. 1591–1594, June 2004. View at Scopus
  18. S. Vajha and P. Shastry, “A novel proximity coupled patch antenna for active circuit integration,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium-Adaptive Arrays in Communications-, pp. 772–775, July 2001. View at Scopus
  19. D. G. Kim, C. B. Smith, C.-H. Ahn, and K. Chang, “A dual-polarization aperture coupled stacked microstrip patch antenna for wideband application,” in Proceedings of the IEEE International Symposium on Antennas and Propagation and CNC-USNC/URSI Radio Science Meeting—Leading the Wave (AP-S/URSI '10), Toronto, Canada, July 2010. View at Publisher · View at Google Scholar
  20. B. Al-Jibouri, H. Evans, E. Korolkiewicz, E. G. Lim, A. Sambell, and T. Viasits, “Cavity model of circularly polarised cross-aperture-coupled microstrip antenna,” IEE Proceedings: Microwaves, Antennas and Propagation, vol. 148, no. 3, pp. 147–152, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. C. A. Balanis, Antenna Theory—Analysis and Design, 2nd edition, 1997.