Table of Contents
International Journal of Microwave Science and Technology
Volume 2011, Article ID 452348, 16 pages
http://dx.doi.org/10.1155/2011/452348
Research Article

Scalable RFCMOS Model for 90 nm Technology

1School of EEE, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
2Cascade Microtech Inc., Singapore Science Park II, Singapore 117586
3Institute of VLSI Design, Zhejiang University, Hangzhou 310027, China

Received 30 May 2011; Revised 8 September 2011; Accepted 12 September 2011

Academic Editor: Mattia Borgarino

Copyright © 2011 Ah Fatt Tong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper presents the formation of the parasitic components that exist in the RF MOSFET structure during its high-frequency operation. The parasitic components are extracted from the transistor's S-parameter measurement, and its geometry dependence is studied with respect to its layout structure. Physical geometry equations are proposed to represent these parasitic components, and by implementing them into the RF model, a scalable RFCMOS model, that is, valid up to 49.85 GHz is demonstrated. A new verification technique is proposed to verify the quality of the developed scalable RFCMOS model. The proposed technique can shorten the verification time of the scalable RFCMOS model and ensure that the coded scalable model file is error-free and thus more reliable to use.