Table of Contents
International Journal of Microwave Science and Technology
Volume 2011, Article ID 945189, 4 pages
http://dx.doi.org/10.1155/2011/945189
Research Article

Temperature Dependence of GaN HEMT Small Signal Parameters

1Electronics Engineering Department, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
2RF Electronics Branch, US Army Research Laboratory, 2800 Powder Mill Road., Adelphi, MD 20783, USA

Received 12 August 2011; Revised 30 November 2011; Accepted 9 December 2011

Academic Editor: Ichihiko Toyoda

Copyright © 2011 Ali M. Darwish et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y.-F. Wu, A. Saxler, M. Moore et al., “30-W/mm GaN HEMTs by field plate optimization,” IEEE Electron Device Letters, vol. 25, no. 3, pp. 117–119, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Pei, R. Chu, N. A. Fichtenbaum et al., “Recessed slant gate AlGaN/GaN high electron mobility transistors with 20.9 W/mm at 10 GHz,” Japanese Journal of Applied Physics, vol. 46, no. 45, pp. L1087–L1089, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. J. S. Moon, D. Wong, M. Hu et al., “55% PAE and high power Ka-band GaN HEMTs with linearized transconductance via n+ GaN source contact ledge,” IEEE Electron Device Letters, vol. 29, no. 8, pp. 834–837, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Darwish, A. Bayba, and H. A. Hung, “Thermal resistance calculation of AlGaN-GaN devices,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 11, pp. 2611–2620, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. A. M. Darwish, A. Bayba, and H. A. Hung, “FET gate length impact on reliability,” in Proceedings of the IEEE MTT-S International Microwave Symposium, (IMS '07), pp. 311–314, Honolulu, Hawaii, USA, June 2007. View at Publisher · View at Google Scholar
  6. T. Palacios, S. Rajan, A. Chakraborty et al., “Influence of the dynamic access resistance in the gm and f T linearity of AlGaN/GaN HEMTs,” IEEE Transactions on Electron Devices, vol. 52, no. 10, pp. 2117–2122, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. D. W. DiSanto and C. R. Bolognesi, “At-bias extraction of access parasitic resistances in AlGaN/GaN HEMTs: impact on device linearity and channel electron velocity,” IEEE Transactions on Electron Devices, vol. 53, no. 12, pp. 2914–2919, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. C. F. Campbell and S. A. Brown, “An analytic method to determine GaAs FET parasitic inductances and drain resistance under active bias conditions,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 7, pp. 1241–1247, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. C. L. Lou, W. K. Chim, D. S. H. Chan, and Y. Pan, “A novel single-device DC method for extraction of the effective mobility and source-drain resistances of fresh and hot-carrier degraded drain-engineered MOSFET's,” IEEE Transactions on Electron Devices, vol. 45, no. 6, pp. 1317–1323, 1998. View at Google Scholar · View at Scopus
  10. S. Manohar, A. Pham, and N. Evers, “Direct determination of the bias-dependent series parasitic elements in SiC MESFETs,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 2 I, pp. 597–600, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Thorsell, K. Andersson, M. Fagerlind, M. Südow, P. A. Nilsson, and N. Rorsman, “Thermal study of the high-frequency noise in GaN HEMTs,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 1, Article ID 4717215, pp. 19–26, 2009. View at Publisher · View at Google Scholar · View at Scopus