Table of Contents
International Journal of Microwave Science and Technology
Volume 2012 (2012), Article ID 157971, 7 pages
http://dx.doi.org/10.1155/2012/157971
Research Article

A Dual-Band SiGe HBT Frequency-Tunable and Phase-Shifting Differential Amplifier Employing Varactor-Loaded, Stacked LC Resonators

Graduate School of Electrical and Information Engineering, Shonan Institute of Technology, 1-1-25 Tsujido-Nishikaigan, Kanagawa, Fujisawa 251-8511, Japan

Received 7 July 2012; Accepted 24 September 2012

Academic Editor: Juan Carlos Bohórquez Reyes

Copyright © 2012 Kazuyoshi Sakamoto and Yasushi Itoh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. R. Rofougaran, M. Rofougaran, and A. Behzad, “Radios for next-generation wireless networks,” IEEE Microwave Magazine, vol. 6, no. 1, pp. 38–43, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. R. S. Tahim, “Multi-band antenna technology,” in Proceedings of the IEEE Antennas and Propagation Society Symposium, vol. 4, pp. 3968–3971, June 2004. View at Scopus
  3. H. Hashemi and A. Hajimiri, “Concurrent multiband low-noise amplifiers-theory, design, and applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 1, pp. 288–301, 2002. View at Google Scholar
  4. Y. Itoh, “L-Band SiGe HBT differential amplifiers using stacked parallel-resonant circuits,” Contemporary Engineering Sciences, vol. 1, no. 3, pp. 127–138, 2008. View at Google Scholar
  5. M. Shirata, T. Shinohara, M. Sato, and Y. Itoh, “An L-band SiGe HBT differential amplifier with frequency and rejection-level tunable, multiple stopband,” International Journal of Microwave and Wireless Technologies, vol. 1, no. 4, pp. 285–292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. C. S. Lin, S. F. Chang, C. C. Chang, and Y. H. Shu, “Design of a reflection-type phase shifter with wide relative phase shift and constant insertion loss,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 9, pp. 1862–1868, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. J. C. Wu, T. Y. Chin, S. F. Chang, and C. C. Chang, “2.45-GHz CMOS reflection-type phase-shifter MMICs with minimal loss variation over quadrants of phase-shift range,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 10, pp. 2180–2189, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Miyaguchi, M. Hieda, K. Nakahara et al., “An ultra-broad-band reflection-type phase-shifter MMIC with series and parallel LC circuits,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 12, pp. 2446–2452, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Tang and K. Mouthaan, “Dual-band Class III loaded-line phase shifters,” in Proceedings of the Asia-Pacific Microwave Conference (APMC '10), pp. 1731–1734, December 2010. View at Scopus
  10. A. Ocera, E. Sbarra, R. V. Gatti, and R. Sorrentino, “An innovative reconfigurable reflection-type phase shifter for dual band WLAN applications,” in Proceedings of the 36th European Microwave Conference (EuMC '06), pp. 64–67, September 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. D. R. Banbury, N. Fayyaz, S. Safavi-Naeini, and S. Nikneshan, “A CMOS 5.5/2.4 GHz dual-band smart-antenna transceiver with a novel RF dual-band phase shifter for WLAN 802.11 a/b/g,” in Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium (RFIC '04), pp. 157–160, June 2004. View at Scopus