Table of Contents
International Journal of Microwave Science and Technology
Volume 2013 (2013), Article ID 584341, 11 pages
http://dx.doi.org/10.1155/2013/584341
Research Article

An Inductorless Cascaded Phase-Locked Loop with Pulse Injection Locking Technique in 90nm CMOS

Solutions Research Laboratory, Tokyo Institute of Technology, 4259-S2-14 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Received 1 December 2012; Accepted 21 January 2013

Academic Editor: Leonid Belostotski

Copyright © 2013 Sang-yeop Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Adler, “A study of locking phenomena in oscillators,” Proceedings of the IRE, vol. 34, pp. 351–357, 1946. View at Publisher · View at Google Scholar
  2. Y. Ito, H. Sugawara, K. Okada, and K. Masu, “A 0.98 to 6.6 GHz tunable wideband VCO in a 180 nm CMOS technology for reconfigurable radio transceiver,” in Proceedings of the IEEE Asian Solid-State Circuits Conference (ASSCC '06), pp. 359–362, November 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Razavi, “Cognitive radio design challenges and techniques,” The IEEE Journal of Solid-State Circuits, vol. 45, no. 8, pp. 1542–1553, 2010. View at Publisher · View at Google Scholar
  4. F. M. Gardner, “Charge-pump phase-lock loops,” IEEE Transactions on Communications, vol. 28, no. 11, pp. 1849–1858, 1980. View at Publisher · View at Google Scholar
  5. X. Zhang, X. Zhou, and A. S. Daryoush, “A theoretical and experimental study of the noise behavior of subharmonically injection locked local oscillators,” IEEE Transactions on Microwave Theory and Techniques, vol. 40, no. 5, pp. 895–902, 1992. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE Journal of Solid-State Circuits, vol. 31, no. 3, pp. 331–343, 1996. View at Google Scholar · View at Scopus
  7. S. Lee, N. Kanemaru, S. Ikeda et al., “A ring-VCO-based injection-locked frequency multiplier with novel pulse generation technique in 65 nm CMOS,” IEICE Transactions on Electronics, vol. 95, no. 10, pp. 1589–1597, 2012. View at Google Scholar
  8. Y. Kobayashi, S. Amakawa, N. Ishihara, and K. Masu, “A low-phase-noise injection-locked differential ring-VCO with half-integral subharmonic locking in 0.18 μm CMOS,” in Proceedings of the 35th European Solid-State Circuits Conference (ESSCIRC '09), pp. 440–443, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Sugiura and S. Sugimoto, “FM noise reduction of Gunn-effect oscillators by injection locking,” Proceedings of the IEEE, vol. 57, no. 1, pp. 77–78, 1969. View at Publisher · View at Google Scholar
  10. M. C. Chen and C. Y. Wu, “Design and analysis of CMOS subharmonic injection-locked frequency triplers,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 8, pp. 1869–1878, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Lee and H. Wang, “Study of subharmonically injection-locked PLLs,” The IEEE Journal of Solid-State Circuits, vol. 44, no. 5, pp. 1539–1553, 2009. View at Google Scholar
  12. S. Y. Lee, S. Amakawa, N. Ishihara, and K. Masu, “Low-phase-noise wide-frequency-range ring-VCO-based scalable PLL with subharmonic injection locking in 0.18 μm CMOS,” in Proceedings of the IEEE MTT-S International Microwave Symposium Digest (MTT '10), pp. 1178–1181, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Y. Lee, S. Amakawa, N. Ishihara, and K. Masu, “High-frequency half-integral subharmonic locked ring-VCO-based scalable PLL in 90 nm CMOS,” in Proceedings of the IEEE Asia-Pacific Microwave Conference (APMC '10), pp. 586–589, December 2010. View at Scopus
  14. B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, New York, NY, USA, 2001.
  15. M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE Journal of Solid-State Circuits, vol. 39, no. 7, pp. 1170–1174, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, John Wiley & Sons, New York, NY, USA, 4th edition, 2001.
  17. T. Sekiguchi, S. Amakawa, N. Ishihara, and K. Masu, “Inductorless 8.9 mW 25 Gb/s 1:4 DEMUX and 4 mW 13 Gb/s 4:1 MUX in 90 nm CMOS,” Journal of Semiconductor Technology and Science, vol. 10, no. 3, pp. 176–184, 2010. View at Google Scholar · View at Scopus
  18. H. Kodama, H. Okada, H. Ishikawa, and A. Tanaka, “Wide lock-range, low phase-noise PLL using interpolative ring-VCO with coarse frequency tuning and frequency linearization,” in Proceedings of the IEEE Custom Integrated Circuits Conference (CICC '07), pp. 349–352, September 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Y. Tak, S. B. Hyun, T. Y. Kang, B. G. Choi, and S. S. Park, “A 6.3–9 GHz CMOS fast settling PLL for MB-OFDM UWB applications,” IEEE Journal of Solid-State Circuits, vol. 40, no. 8, pp. 1671–1679, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Y. Lu and W. Z. Chen, “A 3-to-10GHz 14-band CMOS frequency synthesizer with spurs reduction for MB-OFDM UWB system,” in Proceedings of the IEEE International Solid-State Circuits Conference—Digest of Technical Papers (ISSCC '08), pp. 126–601, February 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Ye, L. Jansson, and I. Galton, “A multiple-crystal interface PLL with VCO realignment to reduce phase noise,” IEEE Journal of Solid-State Circuits, vol. 37, no. 12, pp. 1795–1803, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. M. M. Izad and C. Heng, “A pulse shaping technique for spur suppression in injection-locked synthesizers,” The IEEE Journal of Solid-State Circuits, vol. 47, no. 3, pp. 652–664, 2012. View at Publisher · View at Google Scholar
  23. X. Gao, E. A. M. Klumperink, M. Bohsali, and B. Nauta, “A 2.2 GHz 7.6 mW sub-sampling PLL with −126 dBc/Hz in-band phase noise and 0.15 psrms jitter in 0.18 μm CMOS,” in Proceedings of the IEEE International Solid-State Circuits Conference—Digest of Technical Papers (ISSCC '09), pp. 392–393, 393a, February 2009. View at Publisher · View at Google Scholar · View at Scopus