Table of Contents
International Journal of Microwave Science and Technology
Volume 2014, Article ID 639457, 12 pages
http://dx.doi.org/10.1155/2014/639457
Research Article

Application of Response Surface Methodology to Enhance Phenol Removal from Refinery Wastewater by Microwave Process

1Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor Street, El-Zohour Region, Nasr City, Cairo 11727, Egypt
2Civil Engineering Department, College of Engineering, University of Salahaddin-Hawler, 44002 SUH, Erbil, Iraq
3School of Civil Engineering, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia

Received 6 January 2014; Accepted 3 April 2014; Published 28 April 2014

Academic Editor: Tanmay Basak

Copyright © 2014 Sherif A. Younis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Chen, M. Yuan, and H. Liu, “Removal of polycyclic aromatic hydrocarbons from aqueous solution using plant residue materials as a biosorbent,” Journal of Hazardous Materials, vol. 188, no. 1–3, pp. 436–442, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Sasaki and S. Tanaka, “Adsorption behavior of some aromatic compounds on hydrophobic magnetite for magnetic separation,” Journal of Hazardous Materials, vol. 196, pp. 327–334, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. T. P. Ryynänen, Reduction of waste water loads at petrochemical plants [M.S. thesis], Department of Chemical and Biological Engineering, Division of Chemical Environmental Science, Chalmers University of Technology, Göteborg, Sweden, 2011.
  4. S. Ishak, A. Malakahmad, and M. H. Isa, “Refinery wastewater biological treatment: a short review,” Journal of Scientific and Industrial Research, vol. 71, no. 4, pp. 251–256, 2012. View at Google Scholar · View at Scopus
  5. K. F. Al-Sultani and F. A. Al-Seroury, “Characterization the removal of phenol from aqueous solution in fluidized bed column by rice husk adsorbent,” Research Journal of Recent Sciences, vol. 1, no. ISC-2011, pp. 145–151, 2012. View at Google Scholar
  6. B. Mukhetjee, J. Turner, and B. Wrenn, “Effect of oil composition on chemical dispersion of crude oil,” Environmental Engineering Science, vol. 28, no. 7, pp. 497–506, 2011. View at Publisher · View at Google Scholar
  7. B. R. Prasannakumar, I. Regupathi, and T. Murugesan, “An optimization study on microwave irradiated, decomposition of phenol in the presence of H2O2,” Journal of Chemical Technology and Biotechnology, vol. 84, no. 1, pp. 83–91, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Beszédes, Z. László, Z. H. Horvàth, G. Szabó, and C. Hodúr, “Comparison of the effects of MW irradiation with different intensities on the biodegradability of sludge from the dairy- and meat-industry,” Bioresource Technology, vol. 102, pp. 814–821, 2011. View at Publisher · View at Google Scholar
  9. W. Li, Q. Zhou, and T. Hua, “Removal of organic matter from landfill leachate by advanced oxidation processes: a review,” International Journal of Chemical Engineering, vol. 2010, Article ID 270532, 10 pages, 2010. View at Publisher · View at Google Scholar
  10. J. P. Robinson, S. W. Kingman, and O. Onobrakpeya, “Microwave-assisted stripping of oil contaminated drill cuttings,” Journal of Environmental Management, vol. 88, no. 2, pp. 211–218, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. L. P. Yang, W. Y. Hu, H. M. Huang, and B. Yan, “Degradation of high concentration phenol by ozonation in combination with ultrasonic irradiation,” Desalination and Water Treatment, vol. 21, no. 1–3, pp. 87–95, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. I. D. Manariotis, H. K. Karapanagioti, and C. V. Chrysikopoulos, “Degradation of PAHs by high frequency ultrasound,” Water Research, vol. 45, no. 8, pp. 2587–2594, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. Y.-C. Chien, “Field study of in situ remediation of petroleum hydrocarbon contaminated soil on site using microwave energy,” Journal of Hazardous Materials, vol. 199-200, pp. 457–461, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Klan and V. Cirkva, “Microwave photochemistry,” in Microwaves in Organic Synthesis, A. Loupy, Ed., Chapter 14, pp. 463–486, Wiley-VCH, 2002. View at Google Scholar
  15. Y. F. Zhao and J. Chen, “Applications of microwaves in nuclear chemistry and engineering,” Progress in Nuclear Energy, vol. 50, no. 1, pp. 1–6, 2008. View at Publisher · View at Google Scholar
  16. Y. Y. Shu, T. L. Lai, H.-S. Lin, T. C. Yang, and C.-P. Chang, “Study of factors affecting on the extraction efficiency of polycyclic aromatic hydrocarbons from soils using open-vessel focused microwave-assisted extraction,” Chemosphere, vol. 52, no. 10, pp. 1667–1676, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Y. Shu, R. C. Lao, C. H. Chiu, and R. Turle, “Analysis of polycyclic aromatic hydrocarbons in sediment reference materials by microwave-assisted extraction,” Chemosphere, vol. 41, no. 11, pp. 1709–1716, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. D.-H. Han, S.-Y. Cha, and H.-Y. Yang, “Improvement of oxidative decomposition of aqueous phenol by microwave irradiation in UV/H2O2 process and kinetic study,” Water Research, vol. 38, no. 11, pp. 2782–2790, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. J. G. Mei, S. M. Yu, and J. Cheng, “Heterogeneous catalytic wet peroxide oxidation of phenol over delaminated Fe-Ti-PILC employing microwave irradiation,” Catalysis Communications, vol. 5, no. 8, pp. 437–440, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Zhihui, Y. Peng, and L. Xiaohua, “Degradation of 4-Chlorophenol by microwave irradiation enhanced advanced oxidation processes,” Chemosphere, vol. 60, no. 6, pp. 824–827, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. M. A. Aramendía, J. C. Colmenares, S. López-Fernández et al., “Photocatalytic degradation of chlorinated pyridines in titania aqueous suspensions,” Catalysis Today, vol. 138, no. 1-2, pp. 110–116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. D. H. Lataye, I. M. Mishra, and I. D. Mall, “Adsorption of 2-picoline onto bagasse fly ash from aqueous solution,” Chemical Engineering Journal, vol. 138, no. 1–3, pp. 35–46, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. L. L. Bo, M. W. Li, X. Quan, S. Chen, D. M. Xue, and C. B. Li, “Treatment of high concentration organic wastewater by microwave catalysis,” in Proceedings of the 3rd International Conference on Microwave and Millimeter Wave Technology Proceedings, Beijing, China, 2002.
  24. D. H. Bremner, R. Molina, F. Martínez, J. A. Melero, and Y. Segura, “Degradation of phenolic aqueous solutions by high frequency sono-Fenton systems (US–Fe2O3/SBA-15–H2O2),” Applied Catalysis B, vol. 90, no. 3-4, pp. 380–388, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. M. R. Doosti, R. Kargar, and M. H. Sayadi, “Water treatment using ultrasonic assistance: a review,” Proceedings of the International Academy of Ecology and Environmental Sciences, vol. 2, no. 2, pp. 96–110, 2012. View at Google Scholar
  26. Y. Qingshan, L. Yongjin, and M. Lingling, “Kinetics of photocatalytic degradation of gaseous organic compounds on modified TiO2/AC composite photocatalyst,” Chinese Journal of Chemical Engineering, vol. 20, no. 3, pp. 572–576, 2012. View at Publisher · View at Google Scholar
  27. C. Capellos and B. H. Bielski, Kinetic Systems: Mathematical Description of Chemical Kinetics in Solution, Wiley-Interscience, New York, NY, USA, 1972.
  28. Y. C. Wong, Y. S. Szeto, W. H. Cheung, and G. McKay, “Adsorption of acid dyes on chitosan—equilibrium isotherm analyses,” Process Biochemistry, vol. 39, no. 6, pp. 693–702, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Y. Farah, N. S. El-Gendy, and L. A. Farahat, “Biosorption of Astrazone Blue basic dye from an aqueous solution using dried biomass of Baker's yeast,” Journal of Hazardous Materials, vol. 148, no. 1-2, pp. 402–408, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Cimino, A. Passerini, and G. Toscano, “Removal of toxic cations and Cr(VI) from aqueous solution by hazelnut shell,” Water Research, vol. 34, no. 11, pp. 2955–2962, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Papadaki, R. J. Emery, M. A. Abu-Hassan, A. Díaz-Bustos, I. S. Metcalfe, and D. Mantzavinos, “Sonocatalytic oxidation processes for the removal of contaminants containing aromatic rings from aqueous effluents,” Separation and Purification Technology, vol. 34, no. 1–3, pp. 35–42, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. O. A. Zalat and M. A. Elsayed, “A study on microwave removal of pyridine from wastewater,” Journal of Environmental Chemical Engineering, vol. 1, no. 3, pp. 137–143, 2013. View at Publisher · View at Google Scholar
  33. V. L. Vaks, G. A. Domrachev, Y. L. Rodygin, D. A. Selivanovskii, and E. I. Spivak, “Dissociation of water by microwave radiation,” Radiophysics and Quantum Electronics, vol. 37, no. 1, pp. 85–88, 1994. View at Publisher · View at Google Scholar · View at Scopus
  34. P. M. Robitaille, “Water, hydrogen bonding, and the microwave background,” Progress in Physics, vol. 2, pp. L5–L8, 2009. View at Google Scholar
  35. X. Quan, Y. Zhang, S. Chen, Y. Zhao, and F. Yang, “Generation of hydroxyl radical in aqueous solution by microwave energy using activated carbon as catalyst and its potential in removal of persistent organic substances,” Journal of Molecular Catalysis A: Chemical, vol. 263, no. 1-2, pp. 216–222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Zhao, J. Cheng, and M. R. Hoffmann, “Kinetics of microwave-enhanced oxidation of phenol by hydrogen peroxide,” Frontiers of Environmental Science and Engineering in China, vol. 5, no. 1, pp. 57–64, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Zhao and K. Fei, “Synergetic kinetics of phenol degradation in water by using microwave/H2O2 system,” Journal of Chemical Industry and Engineering, vol. 59, no. 1, pp. 101–105, 2008. View at Google Scholar · View at Scopus
  38. A. I. Khuri and J. A. Cornell, Response Surfaces: Design and Analysis, Marcel Dekker, New York, NY, USA, 1987.
  39. J. Virkutyte, V. Vičkačkaite, and A. Padarauskas, “Sono-oxidation of soils: degradation of naphthalene by sono-Fenton-like process,” Journal of Soils and Sediments, vol. 10, no. 3, pp. 526–536, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Clarke and R. E. Kempson, Introduction To the Design and Analysis of Experiments, Arnold, London, UK, 1997.
  41. K. Ravikumar, K. Pakshirajan, T. Swaminathan, and K. Balu, “Optimization of batch process parameters using response surface methodology for dye removal by a novel adsorbent,” Chemical Engineering Journal, vol. 105, no. 3, pp. 131–138, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Wächter and A. Cordery, “Response surface methodology modelling of diamond-like carbon film deposition,” Carbon, vol. 37, no. 10, pp. 1529–1537, 1999. View at Publisher · View at Google Scholar · View at Scopus